CENTRALNE LABORATORIUM OCHRONY RADIOLOGICZNEJ

mgr Paweł Krajewski

OPRACOWANIE I WERYFIKACJA MODELU DLA OCENY DAWEK OD IZOTOPÓW PROMIENIOTWÓRCZYCH JODU I CEZU UWALNIANYCH DO ŚRODOWISKA

Praca doktorska wykonana pod kierunkiem prof. dr hab. Zofii Pietrzak-Flis w Zakładzie Higieny Radiacyjnej

Warszawa 1999

Wyrażam gorące podziękowanie mojej promotorce Pani prof. dr hab. Zofii Pietrzak-Flis za okazywaną zachętę, zainteresowanie pracą, pomoc merytoryczną i bardzo życzliwą opiekę.

STRE	SZCZENIE	5
WPR	OWADZENIE	7
1	ZACHOWANIE SIĘ JODU W ŚRODOWISKU	9
1.1	Występowanie jodu.	9
1	.1.1 Jod stabilny	9
1	.1.2 Jod promieniotwórczy	9
	wybucny jąarowe Elektrownie jadrowe, zakłady przerobu paliwa	10
	Awarie reaktorów jądrowych	11
1.2	JOD WATMOSFERZE	11
1.3	DEPOZYCJA JODU	12
1.4	JOD W GLEBIE	13
1.5	Przechodzenie jodu do roślin	14
1.6	PRZECHODZENIE JODU DO MLEKA, NABIAŁU I MIĘSA	16
1.7	METABOLIZM JODU W ORGANIZMIE CZŁOWIEKA	18
2	ZACHOWANIE SIĘ CEZU W ŚRODOWISKU	26
2.1	WYSTĘPOWANIE CEZU	26
	Wybuchy jądrowe	27
	Elektrownie jądrowe Awarie reaktorów jadrowych	27
2.2	DEPOZYCJA CEZU Z ATMOSFERY	27
2.3	CEZ W GLEBIE	29
2.4	Przechodzenie cezu do roślin	32
2.5	PRZECHODZENIE CEZU DO MLEKA, MIĘSA I NABIAŁU.	34
2.6	METABOLIZM CEZU W ORGANIZMIE CZŁOWIEKA.	38
3	CEL PRACY	43
4	MODEL CLRP – OPRACOWANIE ALGORYTMÓW OPISUJĄCYCH PROCESY TRANSPORTU RADIONUKLIDÓW W EKOSYSTEMIE LĄDOWYM CZŁOWIEKA	44
4.1	WPROWADZENIE	44
4.2	SCHEMAT MODELU	47
4.3	ALGORYTMY MATEMATYCZNE MODELU CLRP	48
4	.3.1 Średnie dzienne stężenie radionuklidu w powietrzu C ⁱ powietrze	48
4	.3.2 Opad promieniotwórczy całkowity D _{Calk}	50
	Opad dzienny suchy D' _{suchy} Opad dzienny mokry D ⁱ metry	50 51
4	.3.3 Steżenie radionuklidu w jadalnej cześci roślin C _x	51
-	W wyniku bezpośredniego skażenia opadem C_x^{opad}	55
	Funkcja frakcji opadu radioaktywnego zatrzymywanego przez część nadziemną rośliny	56
Λ	<i>W wyniku przejscia z gleby</i> $C_{\lambda}^{production}$	36 61

SPIS TREŚCI

4.3.5 Stężenie radionuklidu w produktach zwierzęcych Cz ^{produkt}	66
4.3.6 Stężenie radionuklidu w narządach krytycznych człowieka C _z	70
4.3.7 Dawka zewnętrzna pochodząca od chmury radioaktywnej H _{chmura}	74
4.3.8 Dawka zewnętrzna od powierzchni gruntu H _g	74
<i>Efektywna depozycja</i> $D_{eff}(t)$	75
4.3.9 Dawka inhalacyjna od chmury H _{inh}	76
4.3.10 Dawka od wchłonięć pokarmowych H _{pokarm}	76
5 WERYFIKACJA MODELU.	81
5.1. Zasady weryfikacji	81
5.2. WERYFIKACJA MODELU CLRP W RAMACH MIĘDZYNARODOWEGO PROGRAMU VAMP (prognozowanie narażenia od ¹³⁷ Cs)	85
5.2.1 Zadania programu VAMP	85
5.2.2 Ocena prawidłowości prognozowania za pomoca modelu CLRP	87
5.3 WERVEIKACIA MODELU NA BAZIE WYNIKÓW BIOMOVS $(^{137}Cs^{-131}I)$	91
5.2.1 Ocone providlowości prograzowanie za pomoce modalu CL BD	02
5.5.1 Ocena prawitułowości prognożowania za pomocą modelu CLKP	92
Scenariusz Fort Collins	101
5.3.2 Wnioski BIOMOVS II	104
5.4. Weryfikacja modelu na podstawie pomiarów ¹³¹ I w Polsce	106
5.4.1 Porównanie pomiarów steżenia w powietrzu	106
5.4.2 Skażenie gruntu	112
5.4.3 Skażenie trawy	116
5.4.4 Skażenie mleka krów	118
5.4.5 Skażenie mleka owiec	125
5.4.6 Określenie redukcji aktywności I-131 w tarczycy w zależności od czasu blokady	128
5.4.7 Jod-131 w tarczycy	143
5.4.8 Ocena dawek obciążających H ₅₀ na tarczycę dla ludności Polski	165
5.5. WERYFIKACJA MODELU CLRP NA PODSTAWIE POMIARÓW CEZU ¹³⁴ CS i ¹³⁷ CS W POLSCE	169
5.5.1 Dane nomiarowe steżenia 134 Cs i 137 Cs w nowietrzu	169
5.5.2 Depozycia 134 Cs i 137 Cs na powierzchnie gruntu	171
5.5.3 Skażenie trawy-efekt starzenia sie" cezu w glebie	173
5.5.4 Steżenia 134 Cs i 137 Cs w mleku	
5.5.5 Steżenie ¹³⁷ Cs w mleku owiec	190
5.5.6 Określenie aktywności Cs-134 i Cs-137 w całym ciele	193
5.5.7 Dawki skuteczne dla ludności Polski po awarii czarnobylskiej od ¹³⁷ Cs i ¹³⁴ Cs	201
6 OMÓWIENIE WYNIKÓW I PODSUMOWANIE	205
7 WNIOSKI	210
BIBLIOGRAFIA	211
SPIS TABEL	223
SPIS RYSUNKÓW	227

STRESZCZENIE

Opracowano i zweryfikowano procedury obliczeniowe do opisu transportu jodu i cezu w środowisku lądowym człowieka. W opracowanum modelu uwzględniono transport tych radionuklidów, od warstwy przyziemnej powietrza do całego ciała (izotopy promieniotworcze cezu) lub narządu krytycznego (tarczyca, jod) dla różnych grup wiekowych ludności.

W matematycznym opisie zjawisk fizycznych odpowiedzialnych za przechodzenie radionuklidów z różnych komponentów ekosystemu wykorzystano formuły znane z literatury bądź też posłużono się rozwiązaniami własnymi. Matematyczne algorytmy modelu transportu zostały zapisane w formie komputerowego kodu (CLRP). Przy ocenie wiarygodności przewidywań modelu zastosowano metodę porównania wielkości obliczanych przez model z według ustalonej W wielkościami pomiarowymi międzynarodowych programach porównawczych metodyki. Weryfikacja modelu oznaczała optymalizację parametrów modelu w celu uzyskania dobrej korelacji przewidywań modelu z danymi pomiarowymi. Optymalizacja parametrów polegała na analizie zjawisk zachodzących w ekosystemie i wyborze parametrów zgodnym z opisem literaturowym danego zjawiska. W tego rodzaju weryfikacji istotne jest sprawdzenie przewidywań modelu na bazie wszelkich dostępnych danych pomiarowych dla poszczególnych komponentów środowiska, poczynając od stężeń w powietrzu poprzez skażenia gruntu, stężenia w trawie, w mleku i jego produktach a kończąc na ostatnim weryfikowalnym pomiarami przedziale jakim jest stężenie radionuklidu w całym ciele lub narządzie.

Weryfikację modelu przeprowadzono w oparciu o dostępne dane (scenariusze) międzynarodowych programów testowania modeli, jak i w oparciu o bazę pomiarów przeprowadzonych w Polsce po awarii EJ w Czarnobylu. Scenariusze te dotyczyły skażeń ¹³⁷Cs lub ¹³¹I dwóch krajów sąsiadujących z Polską o podobnej strukturze agrotechnicznej i warunkach klimatycznych (Czechy i Niemcy), oraz dwóch krajów o odmiennej strukturze agrotechnicznej i warunkach klimatycznych (Finlandia i USA).

W oparciu o pomiary wykonane w Polsce określono parametry modelu charakterystyczne dla polskiego środowiska lądowego. Wiarygodność przewidywań modelu CLRP dla promieniotwórczego ¹³¹I była testowana na bazie własnych pomiarów zawartości ¹³¹I w tarczycy mieszkańców różnych rejonów Polski oraz dostępnych baz danych pomiarów wykonanych w okresie 1986-1997 roku. W szczególności przeprowadzono testy poprawności zastosowanych

algorytmów obliczeniowych zawartości ¹³¹I w tarczycy przy zastosowania środków zapobiegawczych takich jak podawanie blokującej dawki jodku potasu. Do weryfikacji modelu dla ¹³⁴Cs i ¹³⁷Cs dodatkowo wykorzystano prace własne dotyczące oceny przejścia ¹³⁷Cs i ¹³⁴Cs z gleby do trawy na terenach północno wschodniej Polski oraz oceny wchłonięć ¹³⁴Cs i ¹³⁷Cs z pożywieniem. Ze względu na specyfikę procedury weryfikacyjnej ujednolicono bazę pomiarową przygotowując jej elektroniczną wersję (w postaci arkuszy Excel 95), co umożliwiało statystyczną analizę wyników pomiarów. Dotyczyło to przede wszystkim możliwości otrzymywania średniej pomiarów danego komponentu środowiska, z danego okresu pomiarowego przy założonym rozkładzie logarytmiczno normalnym danych oraz górnego i dolnego kresu 95% przedziału ufności średniej. W oparciu o wyniki testów przedstawiono wnioski dotyczące istotnych czynników wpływających na niepewność przewidywań modelu .

Określono stopień dopasowania przewidywań modelu z wartościami pomiarowymi przy założeniu, że optymalnie zostały dobrane parametry początkowe modelu. W ten sposób sprawdzono, czy model jest zdolny generować estymatę średnich wartości pomiarowych oraz 95% przedział ufności wartości średniej. Ma to praktyczne znaczenie, gdyż służy ocenie wiarygodności modelu w sytuacji, gdy ocena narażenia populacji będzie musiała zostać dokonana we wczesnej fazie uwolnienia bez dostatecznego wsparcia dużą liczbą danych pomiarowych.

WPROWADZENIE

Awaria IV Bloku Elektrowni Jądrowej w Czarnobylu, do jakiej doszło w 26 kwietnia 1986 roku, wykazała potrzebę dysponowania modelami komputerowymi (kodami) pozwalającymi na szybką ocenę dawek od promieniowania jonizującego. Kody te mają służyć jako narzędzie do wspomagania decyzji na wypadek uwolnień radionuklidów do środowiska. Zalecenia takie sformułowano m.in. w raporcie Międzynarodowej Agencji Energii Atomowej [1] oraz w Raporcie Komisji Rządowej do Spraw Oceny Promieniowania Jądrowego i Działań Profilaktycznych [2].

Przez model komputerowy rozumie się procedurę, służącą do przewidywania spodziewanych w środowisku efektów wynikających z działalności człowieka, w wyniku której może nastąpić zanieczyszczenie środowiska substancjami chemicznymi lub radioaktywnymi (np. budowa i uruchomienie EJ, awaryjne lub rutynowe uwolnienie substancji radioaktywnych). Metoda przewidywania polega na opisie procesów zachodzących w środowisku w postaci matematycznego modelu zapisanego w formie komputerowego algorytmu. Algorytm taki umożliwia otrzymanie wyniku liczbowego (np. stężenia izotopu w poszczególnych składnikach środowiska i łańcucha pokarmowego, wielkość dawki), który jest niezbędny przy podejmowaniu decyzji dotyczących np. ewakuacji ludności, pozostania w budynkach czy podania stabilnego jodu blokującego tarczycę. Różnorodność zjawisk zachodzących w ekosystemie powoduje, że w wielu przypadkach matematyczny opis procesów fizycznych i chemicznych, zachodzących w tak złożonym a w ograniczonym stopniu poznanym medium, wymaga stosowania uproszczeń i posługiwania się parametrami fenomenologicznymi.

Jednak daleko idące uproszczenie modelu i sprowadzenie opisu skomplikowanych zjawisk do jednego globalnego współczynnika przeliczeniowego typu depozycja-dawka, może prowadzić do niepewnej oceny dawek [3], [4], [5]. Ponadto stosowana w takich przypadkach procedura obliczeniowa z użyciem parametrów zachowawczych tzn. zawyżających dawkę, może prowadzić do zbyt drastycznych decyzji dotyczących zastosowania środków zaradczych np. ewakuacji ludności). Z drugiej strony zbyt duża liczba parametrów modelu zwielokrotnia czas wprowadzenia danych początkowych jak również czas obliczeń, co ogranicza użyteczność modelu jako narzędzia wspomagającego decyzję [6], [7]. Komputerowe modele środowiska są zwykle kompromisem pomiędzy wymogiem rzeczywistego opisu zjawisk zachodzących w ekosystemie, a koniecznością szybkiej oceny narażenia populacji.

Obecnie technika komputerowa pozwala na zwiększenie stopnia dokładności i szybkości przetwarzania danych, przez co umożliwia bardziej precyzyjny opis zjawisk zachodzących w naturalnym środowisku człowieka. W celu sprawdzenia i uwiarygodnienia prognoz

7

komputerowych modeli środowiska, utworzono międzynarodowe programy badawcze: VAMP (VALIDATION OF ENVIRONMENTAL MODELS PREDICTIONS) i BIOMOVS (BIOSPHERIC MODEL VALIDATION STUDY) koordynowane przez Międzynarodową Agencję Energii Atomowej [8], [9], [10].

W niniejszej pracy doktorskiej opracowano model do prognozowania skażeń środowiska i człowieka promieniotwórczymi izotopami jodu i cezu, uwalnianymi do atmosfery oraz oceny dawek. Model ten uwzględnia parametry charakterystyczne dla warunków w Polsce, biorąc pod strukturę agrotechniczna, warunki klimatyczne, właściwości gleby, strukturę spożycia, współczynniki przechodzenia radionuklidów w środowisku.

1 ZACHOWANIE SIĘ JODU W ŚRODOWISKU

1.1. Występowanie jodu.

1.1.1 Jod stabilny

Jod jest pierwiastkiem mało rozpowszechnionym w przyrodzie. W skałach występuje w ilości od około 0.01 do 6 ppm *[11]*, głownie w postaci AgI, CuI, Cu(OH)IO₃ i jako uboczny składnik innych minerałów.

W wyniku wietrzenia jod ulatnia się do atmosfery. Jod w znacznych ilościach dostaje się do wód w formie jodków (\overline{I} , \overline{I}_3) lub formie oksyanionów (\overline{IO} , \overline{IO}_3 , $\overline{H}_4\overline{IO}_6$).

W glebach stężenie jodu jest większe niż w skałach – mieści się ono w zakresie 1-15 ppm [11]. Skupia się on głównie w warstwach powierzchniowych. Nagromadzeniu jodu w glebach sprzyja ich duża zdolność sorpcyjna. Najwięcej jodu znajduje się w glebach organicznych i glebach w pobliżu mórz.

Podwyższony poziom jodu w glebach nadmorskich jest następstwem przechodzenia tego pierwiastka z wód morskich drogą atmosferyczną. Zawartość jodu w basenach morskich jest wyższa niż w wodach śródlądowych. W morzach jod występuje głównie w formie IO_3^- i w znacznie mniejszych ilościach w formie jodków I⁻. Pod wpływem światła słonecznego obie te formy ulegają rozkładowi do jodu pierwiastkowego, który ulatnia się do atmosfery i następnie jest przenoszony na ląd z wiatrem lub opadami atmosferycznymi. Jod naturalny występuje w postaci jednego izotopu trwałego o liczbie masowej 127 i izotopu promieniotwórczego ¹²⁹ I.

1.1.2 Jod promieniotwórczy

Jedynym naturalnym izotopem promieniotwórczym jodu jest ¹²⁹I o bardzo długim okresie połowicznego rozpadu równym 15.7 milionów lat. Powstaje on w wyniku spontanicznego rozszczepienia ciężkich jąder lub w wyniku interakcji wysokoenergetycznych cząstek promieniowania kosmicznego w wyższych warstwach atmosfery, głównie z ksenonem i tellurem ¹²⁸Te i ¹³⁰Te. Na podstawie stosunku ¹²⁹I/¹²⁷I w wodzie morskiej równego 3×10⁻¹⁴ i przy założeniu że ten sam stosunek zachodzi przy wytwarzaniu ¹²⁹I w wyniku oddziaływania kosmicznego, ocenia się że całkowita aktywność ¹²⁹I w wodzie wynosi 7×10⁹ Bq, natomiast z badań stosunku ¹²⁹I/¹²⁷I w bogatych w jod minerałach, ocenia się zawartość ¹²⁹I w hydrosferze i litosferze na około 10¹² Bq *[12], [13]*.

Dotychczas zidentyfikowano 25 sztucznych izotopów promieniotwórczych jodu o masach atomowych od 117 do 141. Następujące izotopy powstają w wyniku reakcji rozszczepienia: ¹²⁸I (25 min), ¹²⁹I (1.57·10⁷lat), ¹³⁰I (12.4h), ¹³¹I (8.06d), ¹³²I(2.3h), ¹³³I (21h), ¹³⁴I(52.8min), ¹³⁵I(6.7h), ¹³⁶I (8.3s), ¹³⁷I(23s), ¹³⁸I(5.9s), ¹³⁹I(2s). Pozostałe radionuklidy otrzymywane są w akceleratorach.

Z punktu widzenia skażenia środowiska i narażenia populacji za najważniejsze uważa się izotopy ¹³¹I i ¹²⁹ I ze względu na ich okresy połowicznego rozpadu. Izotopy te obecne są w środowisku głównie w wyniku wybuchów jądrowych, uwolnień z elektrowni atomowych, z zakładów przeróbki paliwa jądrowego i awarii reaktorów jądrowych.

Wybuchy jądrowe

Na podstawie analizy wydajności powstawania poszczególnych radionuklidów ocenia się, że wydajność wytwarzania ¹³¹I oraz ¹²⁹I Bq na 1 MT wybuchu wynosi odpowiednio 0.029, 0.0126. W wyniku próbnych wybuchów jądrowych zostało do roku 1980 wprowadzone do atmosfery około 4×10^{11} Bq ¹²⁹I i około 6.5×10^{20} Bq ¹³¹I *[14], [16]*.

Elektrownie jądrowe, zakłady przerobu paliwa

W czasie normalnej eksploatacji elektrowni jądrowej, ilości izotopów jodu uwalnianych do środowiska są bardzo małe. Aktywność ¹³¹I osiąga w reaktorze równowagę promieniotwórczą po kilku tygodniach od eksploatacji reaktora, wynosi ona 3×10^{15} Bq/MW(e)• i zwiększa się nieznacznie pod koniec cyklu paliwowego, w wyniku pojawienia się produktów rozszczepienia plutonu. Odpowiednio aktywność ¹³¹I na jednostkę wytwarzanej energii wynosi 9×10^{19} Bq/GW [16], [17].

Wskutek nieszczelności osłon paliwa małe ilości ¹³¹I wytwarzanego w paliwie jądrowym mogą przedostać się do obiegu chłodzącego, skąd mogą przejść do układów odprowadzających.

Na podstawie badań prowadzonych w USA i kilku krajach Europy ocenia się że w zależności od typu reaktora, uwolnienia do środowiska ¹³¹I wynosiły od 0.2×10^9 do 2×10^9 Bq/GW na rok dla reaktorów typu PWR, oraz 14×10^9 Bq na GW/rok dla reaktorów LWGR.

Aktywność ¹²⁹I produkowana w reaktorach jest o blisko dziesięć rzędów wielkości mniejsza niż ¹³¹I. Aktywność tego radionuklidu produkowana na jednostkę energii wynosi około 5×10^{10} Bq/GW/rok. Przy założeniu, że aktywność ¹²⁹I uwalniana na jednostkę energii wytwarzanej w reaktorze pozostaje w takim samym stosunku jak zawartości tych radionuklidów w reaktorze (2×10⁻¹⁰), ocenia się, że całkowita aktywność ¹²⁹I uwolniona do środowiska przez wszystkie reaktory do roku 1989 wyniosła około 6×10⁴ Bq *[17]*.

[•] Mega Wat produkowanej energii elektrycznej

Awarie reaktorów jądrowych

Pomimo wielokrotnych systemów zabezpieczeń i specjalnych norm technologicznych, mają miejsce awarie w elektrowniach jądrowych i zakładach przerobu paliwa.

W kilku awariach nastąpiło uwolnienie ¹³¹I do środowiska. Udział ¹³¹I w ogólnej ilości substancji promieniotwórczych uwalnianych do środowiska jest znaczący (Tabela 1.1—1) i decyduje o narażeniu w okresie bezpośrednim po awarii. Największe uwolnienie ¹³¹I miało miejsce podczas awarii w Windscale i w Czarnobylu *[17]*.

Data i miejsce awarii	Uwolnienie ¹³¹ I [Bq]	Udział ¹³¹ I w aktywności uwolnionej z reaktora
9.10.1957r. Windscale Wlk. Brytania	6 10 ¹⁴	40 %
3.01.1961 r. Idaho Falls USA	2.6 10 ¹²	99.9%
28.03.1979r. Threee Mile Island USA	5.6 10 ¹¹	<1%
26.04.1986r. Czarnobyl b. ZSRR	2.7 10 ¹⁷	20%

Tabela 1.1—1. Uwolnienia ¹³¹I w wyniku awarii jadrowych.

1.2. JOD WATMOSFERZE

Uwolniony do atmosfery jod może występować w różnych postaciach fizykochemicznych. Wyróżniamy jod elementarny (I oraz I₂), jod organiczny (gdzie jodek metylu CH₃I uważany jest za jego najprostszą formę) oraz kwas podjodawy (HOI). Część jodu ulega związaniu z aerozolem w powietrzu. Zachowanie się izotopów jodu w środowisku zależy od składu fizykochemicznych postaci w jakich są uwalniane. Z danych literaturowych wynika, że w zależności od typu reaktora skład uwalnianych postaci jodu różni się znacząco i dla reaktorów typu PWR wynosi: 31% organiczny, 40% HOI, 27% elementarny i 2% związany z aerozolem *[18]*, natomiast dla reaktorów typu BWR skład ten wynosi: 40% organiczny, 20% HOI, 28% elementarny, i 12% związany z aerozolem. Skład ten zmienia się w czasie na korzyść związków organicznych w zależności od warunków atmosferycznych panujących w środowisku i może być całkowicie różny w miejscach dalej położonych od punktu uwolnienia. Przyczyny tego zjawiska są złożone, a głównym czynnikiem jest różna prędkość osadzania poszczególnych form jodu na

powierzchni ziemi oraz konwersja postaci fizykochemicznych. Jod elementarny ma największą prędkość osadzania rzędu 2×10^{-1} m s⁻¹ podczas gdy postać organiczna jodu ma prędkość osadzania trzy rzędy wielkości mniejszą (5×10^{-5} m s⁻¹). Prędkość osadzania jodu związanego z aerozolem oraz HOI zależy od rozkładu aerozoli, prędkości wiatru oraz rodzaju powierzchni i zawiera się w przedziale $10^{-3} \div 3 \times 10^{-4}$ m s⁻¹ czyli pomiędzy prędkościami osadzania jodu elementarnego i organicznego.

Wskutek efektu fotochemicznego elementarna postać jodu wiąże się z aerozolem w powietrzu ze średnim czasem życia około 1 min, podczas gdy średni czas życia frakcji organicznych wynosi 60 godzin [19].

1.3. DEPOZYCJA JODU

Depozycja jodu na powierzchnię ziemi następuje w wyniku opadu suchego oraz tzw. opadu mokrego polegającego na wymywaniu przez deszcz jodu unoszonego w powietrzu. Opad mokry ma znacznie większą prędkość niż opad suchy. Nie koniecznie musi to powodować większego skażenia szaty roślinnej ponieważ równocześnie następuje spłukiwanie radionuklidu z powierzchni liści. Ocenia się, że około 50% ¹³¹I opadającego z deszczem jest zatrzymywane przez rośliny w okresie bujnej wegetacji *[20]*. Przeprowadzono szereg prac doświadczalnych i teoretycznych dotyczących zależności prędkości opadania jodu w zależności od gęstości pokrywy roślinnej, prędkości wiatru i względnej wilgotności powietrza. Typowe wartości prędkości osadzania jodu elementarnego (molekularno-gazowego) wynoszą 2×10^{-2} m s⁻¹, a dla jodu organicznego 5×10^{-5} m s⁻¹. Dla jodu związanego z aerozolem typowe wartości prędkości depozycji na trawę wynoszą 1×10^{-3} m s⁻¹, a dla koniczyny 2×10^{-3} m s⁻¹ *[21], [22]*. Dokładniejsze prace teoretyczne wiążą osadzanie frakcji aerozolowej jodu z rozkładem widma aerozolu i prędkością wiatru, a wielkość wymywania przez deszcz z wielkością i intensywnością opadu *[23]*. Funkcje i parametry zostały omówione w rozdziałe omawiającym algorytmy modelu CLRP. (Rozdział 4.3.2).

1.4. JOD W GLEBIE

Dla opisu transportu pionowego jodu w glebie wyróżnia się cztery składowe: składową organiczną, mineralną, składową macierzystą i fazę roztworu. Za migrację jodu w głąb gleby odpowiedzialna jest jego frakcja rozpuszczalna.

Transport ten zachodzi głównie wskutek przemieszczania się wody z powierzchni gleby do tzw. strefy nasycenia przez pory gleby. Prędkość migracji radionuklidu w glebie można ocenić według wzoru [24]:

$$V_{nuklidu} = \frac{V_{woda}}{(1 + \delta \cdot K_d / \Theta)}$$

gdzie:

V_{nuklidu} - prędkość migracji [cm rok⁻¹]

V_{wody} - predkość migracji wody [cm rok⁻¹]

 δ -gęstość gleby [kg dcm⁻³]

Kd- współczynnik frakcji absorbowanej do frakcji rozpuszczalnej radionuklidu

 Θ - objętość porów gleby do całkowitej objętości gleby

Do oceny migracji radionuklidu w poszczególnych warstwach gleby używany jest czas połowicznego zaniku radionuklidu w danej warstwie L [cm], określony wzorem.

$$T_{1/2 nuklidu} = \ln(2) \frac{L}{V_{nuklidu}}$$

Ocenia się, że dla średniej rocznej wielkości opadu rocznego równego 70 cm [25] i 30% objętości porów w glebie, prędkość migracji pionowej wody wynosi 230 cm rok⁻¹. Ponieważ większość innych radionuklidów jest absorbowana w glebie i tylko niewielka frakcja jest rozpuszczalna, migracja tych radionuklidów w glebie jest mniejsza.

Przykładowe prędkości migracji oraz $T_{1/2}$ (czas połowicznego zaniku radionuklidu w danej warstwie) dla jodu, przy średnim opadzie rocznym w Polsce równym 700 mm, dla warstw na głębokości 10 i 25 cm przedstawia Tabela 1.4—1.

101500				
Typ gleby	Piasek	Ił	Glina	Organiczna
Gęstość [kgdcm ⁻³]	1.4	1.4	1.5	0.5
 Θ -objętość porów gleby do całkowitej objętości gleby 	30%	30%	30%	30%
Kd- współczynnik frakcji absorbowanej do frakcji rozpuszczalnej radionuklidu	1	5	1	25
V _{nuklidu} [cm/rok]	41.2	9.6	38.9	5.5
$T_{1/2}$ z warstwy 10 cm (pastwiska)	0.2 lat	0.7 lat	0.2 lat	1.3 lat
T _{1/2} z warstwy 25 cm (korzeniowej) ornej	0.4 lat	1.8 lat	0.4 lat	3.2 lat

Tabela 1.4—1. Przykładowe prędkości migracji oraz T1/2 dla jodu dla średnich opadu rocznego w Polsce

Niektórzy autorzy przyjmują Kd równe 100 *[27]* dla wszystkich rodzajów gleb, co daje okres połowicznego zaniku w warstwie korzeniowej dla pól uprawnych (25 cm) i pastwisk (10 cm) odpowiednio 60 i 24 lata. Przytoczone powyżej wartości mają znaczenie dla długożyciowego izotopu jodu ¹²⁹I, lub jodu stabilnego ¹²⁷I , w przypadku krótko-życiowych izotopów jodu mają znaczenie czysto teoretyczne.

1.5. PRZECHODZENIE JODU DO ROŚLIN

Podobnie jaki inne nuklidy jod może przechodzić do rośliny dwiema drogami: w skutek bezpośredniej depozycji na część naziemną rośliny, lub też z gleby przez jej system korzeniowy, którym przechodzi jod uprzednio zakumulowany w glebie. Absorpcja jodu na powierzchni liści jest decydującą drogą skażenia roślin przy wysokim opadzie radioaktywnym we wczesnej fazie skażenia środowiska i zmienia się w zależności od stopnia rozwoju części naziemnej rośliny, w niewielkim stopniu jod może również wnikać przez nasadę roślin *[3], [5], [20].* Przechodzenie jodu z gleby do rośliny przez system korzeniowy ma znaczenie długoterminowe i w znacznej mierze zależy od właściwości gleby oraz praktyk agrotechnicznych, a staje się istotny dla długożyciowego izotopu jodu ¹²⁹I lub jodu stabilnego ¹²⁷I.

Frakcja jodu zatrzymywana przez roślinę opisywana jest wzorem Chamberlaina [21], [28]:

$$f = 1 - e^{-\mu B}$$

gdzie:

f- frakcja zatrzymywana przez roślinę

 μ - współczynnik intercepcji [m² kg⁻¹],

B -biomasa części naziemnej rośliny (suchej masy na jednostkę powierzchni [kg m⁻²] [29].

W zależności od postaci w jakiej znajduje się materiał radioaktywny: depozycji suchej lub depozycji mokrej (zawarty w kroplach deszczu lub mgły), zmieniać się będzie współczynnik zatrzymywania na częściach nadziemnych roślin (tzw. współczynnik intercepcji *[29]*). Analiza danych eksperymentalnych sugeruje przyjęcie wartości współczynnika intercepcji dla trawy w zakresie 2.3 - 3.3 m² kg⁻¹. Niektórzy autorzy sugerują przyjęcie stałej wartości 2.8 dla aerozolu pojawiającego się w opadzie powybuchowym i po uwolnieniach w znacznej odległości o średnicy cząstek (0÷100 µm) *[21]*. Wartość współczynnika intercepcji µ dla opadu mokrego zmienia się w granicach 1-10 i zależy od wielkości deszczu, od stopnia dojrzałości rośliny i postaci fizykochemicznej radionuklidu *[21]*.

Jod jest usuwany z powierzchni roślin, wskutek różnych czynników takich jak wiatr, deszcz, rozcieńczenie stężenia radionuklidu przez wzrost rośliny. Trudności eksperymentalne w określeniu wpływu poszczególnych składników na szybkość usuwania radionuklidów z powierzchni roślin powodują, że wprowadza się wielkość połowicznego czasu usuwania T 1/2w (weathering half-life), który określa się na podstawie badań zaniku aktywności radionuklidu na roślinach. Jako wartość średnia dla ¹²⁹I lub jodu stabilnego przyjmuje się $T_{1/2w} = 14$ dni [30]. Prace niektórych autorów wskazują jednak na znaczne różnice tej wielkości w zależności od postaci fizykochemicznej radionuklidu i gatunku rośliny, szczególnie znamienne statystycznie wydają się wartości T 1/2w dla jodu elementarnego równe 7.2 dnia z zakresem (4.5÷14) dni, w porównaniu z postacią aerozolową tego radionuklidu dla której T $_{1/2w}$ = 17 dnia z zakresem (9÷34) /31/. Dla ¹³¹I, ze względu na jego rozpad radioaktywny, czas ten jest krótszy i wynosi 5 dni z zakresem 3÷6 dni [32], [33]. Dodatkowym czynnikiem powodującym skażenie owocu czy korzenia rośliny jest przejście radionuklidu przez tkanki okrywowe do liści, a dalej naczyniami do całej rośliny. Dotychczasowe badania sugerują, aby współczynnik przejścia jodu z liści do plonu czyli tak zwany współczynnik translokacji przyjąć jako równy jedności [27]. Brak jest danych odnośnie tego współczynnika dla jodu ¹²⁹I i jodu stabilnego. W przypadku ¹³¹I wielkość tego współczynnika nie ma znaczenia ze względu na krótki czas rozpadu radioaktywnego tego izotopu.

Współczynnik przechodzenia jodu z gleby do roślin wyrażony jako stosunek stężenia jodu w suchej masie rośliny do stężenia jodu w suchej glebie zawiera się w granicach 3.4 10^{-4} $\pm 3.4 \ 10^{-2}$ [Bq kg⁻¹ (suchej masy rośliny)/ Bq kg⁻¹ (suchej masy gleby)] ze średnią wartością 3.4 10^{-3} i jest o dwa rzędy wielkości mniejszy od analogicznego współczynnika dla cezu [21]. Brak jest danych w literaturze opisujących jego zależność od gatunku rośliny i typu gleby.

1.6. PRZECHODZENIE JODU DO MLEKA, NABIAŁU I MIĘSA.

Droga pokarmowa jest główną drogą przechodzenia jodu do organizmu zwierząt. Z przewodu pokarmowego ludzi i zwierząt jod jest absorbowany w 100%. Głównym źródłem jodu w diecie zwierząt jest pasza oraz woda pitna. W przypadku krów mlecznych oraz rzeźnych dzienne zapotrzebowanie na jod stabilny wynosi około 4 mg na dzień *[34]*. W przypadku innych zwierząt hodowlanych dzienne zapotrzebowanie na jod stabilny można oszacować na podstawie masy ich ciała *[35]*. Przy skażeniu środowiska radioaktywnym ¹³¹I , najbardziej istotna z punktu widzenia narażenia wewnętrznego człowieka jest droga pasza-mleko-człowiek. Z tych względów większość badań eksperymentalnych koncentrowała się na określeniu współczynnika przejścia jodu z paszy do mleka. W celu standaryzacji wyników wprowadza się umowną wielkość zwaną współczynnikiem przejścia do mleka lub produktu zwierzęcego jako frakcję dziennego wchłonięcia radionuklidu przechodzącego do jednego kilograma produktu zwierzęcego w warunkach równowagi.

Funkcja retencji[®] radionuklidu w produkcie zwierzęcym, zwykle wyrażona dwuczłonową funkcją wykładniczą ma następującą postać *[27]:*

$$R_{x}(t) = F_{x} \times \left(\alpha \times \lambda_{szybka} \times \exp\left[-\lambda_{szybka} \times t\right] + (1 - \alpha) \times \lambda_{wolna} \times \exp\left[-\lambda_{wolna} \times t\right]\right)$$

gdzie:

 $F_x = współczynnikiem przejścia do mleka lub produktu zwierzęcego$ $<math>\lambda_{szybka}$ – stała składowej szybkiej zaniku biologicznego jodu w produkcie zwierzęcym λ_{wolna} - stała składowej wolnej zaniku biologicznego jodu w produkcie zwierzęcym α - udział składowej szybkiej; (1- α) - udział składowej wolnej

Parametry tej funkcji wyznaczane są eksperymentalnie przez badanie zaniku radionuklidu w produkcie, przy znanym z pomiaru bądź oszacowanym rozkładzie wchłonięć. Badania prowadzi się zwykle na wybranej populacji zwierząt, w wyniku czego tak określona funkcja retencji może reprezentować uśrednione wartości dla danego regionu radioekologicznego.

[®] Funkcję opisującą zmiany w czasie zawartości radionuklidu w produkcie przy jednostkowym wchłonięciu w czasie t=0

Badania współczynnika przejścia jodu do mleka prowadzone na podstawie danych po wybuchach jądrowych dla krów wypasanych w warunkach naturalnych i karmionych paszą (trawa, siano lub lucerna), wskazywały na wartość tego współczynnika równą 5×10^{-3} , w granicach $1 \times 10^{-3} \div 1 \times 10^{-2}$ d L⁻¹ *[38]*. Podobne wartości współczynnika przejścia do mleka otrzymano w badaniach po awarii w Czarnobylu: średnia 3.4×10^{-3} [d L⁻¹] z zakresem $0.8 \div 8 \times 10^{-3}$ [d L⁻¹] *[37]*. Wartości współczynnika przejścia rekomendowane przez MAEA przed awarią w Czarnobylu dla obliczeń modelowych wynosiła 1×10^{-2} d L⁻¹ *[3]*.

W niektórych pracach sugeruje się, że rozpiętość współczynników przejścia ¹³¹I do mleka może być spowodowana niedoborem jodu stabilnego w diecie *[35]*.

Badania współczynników przejść jodu do innych produktów zwierzęcych przeprowadzano głównie na podstawie doświadczeń ze sztucznie skażoną paszą zwierząt [39], [40], [41], [42], [43], [44].

W opracowaniu [21] przedstawiono zestawienie średnich współczynników przejść i podano 95% przedział ufności średniej. W badaniach prowadzonych w Niemczech (na podstawie własnych eksperymentów ze zwierzętami oraz kompilacji innych danych) opracowano zbiór parametrów funkcji retencji dla kilkudziesięciu pierwiastków. Parametry te zostały rekomendowane jako charakterystyczne dla obszaru Europy Centralnej [27].

Tabela 1.6—1 przedstawia parametry funkcji retencji jodu dla różnych produktów zwierzęcych rekomendowane dla Europy Centralnej oraz współczynniki przejść jodu do tych produktów z zakresem 95% przedziału ufności średniej zalecane dla modeli środowiska *[21]*.

Tekomenao wale dia modeli brodo wiska dia Europy.						
PRODUKT	PRODUKT ^F x współczynnik równowagi [d L ⁻¹] lub [d kg ⁻¹]			T _{1/2szybka}	T _{1/2wolna}	Odnośnik
Mlaka Irrány	3.0×10 ⁻³	1	0	0.7 d		$[27]^{1}$
MIEKO KIÓW	$10 \times 10^{-3} (1 \times 10^{-3} \div 35 \times 10^{-3})$	-	-	-	-	[21]
Mlako owieg	500×10 ⁻³	1	0	0.7 d		[27]
WIEKO OWIEC	$490 \times 10-3$ ($80 \times 10^{-3} \div 940 \times 10-3$)	I	-	-	-	[21]
Mlaka karia	500×10 ⁻³	1	0	0.7 d		[27]
IVIIEKO KOZIE	430×10^{-3} (60×10 ⁻³ ÷ 650×10 ⁻³)	I	-	-	-	[21]
Mięso krowie	10×10 ⁻³	0	1		100 d	[27]
Mi	1×10 ⁻³		1		100 d	[27]
Mięso wołowe	40×10^{-3} $(7 \times 10^{-3} \div 50 \times 10^{-3})$	I	-	-	-	[21]
Mięso cielęce	4×10 ⁻³	0	1		100 d	[27]
Mieso wieprzowe	3×10 ⁻³	0	1		100 d	[27]
więso wiepizowe	40×10^{-3} (7×10 ⁻³ ÷ 50×10 ⁻³)	-	-	-	-	[21]
Mijeso jagnjece	10×10 ⁻³	0	1		100 d	[27]
Winęso jaginęce	30×10 ⁻³	-	-	-	-	[21]
Mięso z kurczaków	100×10 ⁻³	0	1		100 d	[27]
	10×10 ⁻³	-	-	-	-	[21]
Jajka kurze	2800×10 ⁻³	0	1	0.7 d		[27]
	3000×10 ⁻³					[21]

Tabela 1.6—1. Przykładowe parametry funkcji retencji jodu w różnych produktach zwierzęcych rekomendowane dla modeli środowiska dla Europy.

1.7. METABOLIZM JODU W ORGANIZMIE CZŁOWIEKA.

Droga pokarmowa jest główną drogą przechodzenia jodu stabilnego do organizmu człowieka. Współczynnik przechodzenia jodu z przewodu pokarmowego do płynów ustrojowych (f_1) wynosi 1, zarówno przy spożywaniu produktów roślinnych jak i zwierzęcych oraz wody pitnej. Głównym źródłem jodu w diecie człowieka jest mleko i produkty mleczne [45].

Ilość jodu pobieranego do organizmu człowieka (tzw. podaż jodu) wykazuje duże wahania w zależności od regionu zamieszkania i tradycyjnej diety.

Uważa się, że podaż jodu zależy głównie od sezonowych zmian zawartości jodu w mleku (np. mleko zimowe zawiera 5 razy więcej jodu niż letnie). Spowodowane jest to bogatymi w jod dodatkami do pasz zwierząt jak również jodowaną solą. Również jaja kurze wykazują wysoką zawartość jodu, ze względu na dodawanie do pasz kur koncentratów wzbogaconych mączką rybną. W niektórych krajach zachodnich poziom jodu w diecie zwiększył się na przestrzeni

¹ Wartości rekomendowane dla krajów Europy Centralnej w Ramach RODOS SYSTEM

ostatnich 40 lat i tak przykładowo: w UK z 80 μ g d⁻¹ (1952 r.) do 225 μ g d⁻¹ (1982r.), w USA z 150 μ g d⁻¹ (1952r.) do 950 μ g d⁻¹ w (1980r.). Dla porównania w Belgii poziom ten wynosi 50 μ g d⁻¹ a w Grecji 45 μ g d⁻¹.

W Polsce ostatnie badania wykazały obecność obszarów endemicznych o dziennej podaży jodu poniżej 100 μ g d⁻¹ [46]. Stężenie jodu w różnych składnikach diety oraz podaż jodu dla osób dorosłych przedstawia Tabela 1.7—1 [45].

	Roczne	Zawartość	Roczna		
Składnik diety	spożycie	jodu	podaż		
	$[kg rok^{-1}]$	[µg kg ⁻¹]	[µg kg ⁻¹]		
Mleko	150	230	34500		
Produkty mleczne	13	230	2990		
Jajka	11	525	5775		
Wołowina	18	240	4320		
Baranina	7	240	1680		
Wieprzowina	20	240	4800		
Podroby	2	240	480		
Drób	8	240	1920		
Warzywa korzeniowe	50	80	4000		
Warzywa liściaste	40	80	3200		
Owoce	19	150	2850		
Zboża	67	140	9380		
Owies	1	<30	<30		
Ryby	7	750	5250		
Napoje	44	20	880		
Suma	$82025=225 \ \mu g \ d^{-1}$				

Tabela 1.7—1. Podaż jodu stabilnego dla osób dorosłych

Droga oddechowa jest istotną drogą wchłonięcia w przypadku skażeń powietrza jodem promieniotwórczym. ICRP Task Group on Lung Dynamics *[48]* zalicza wszystkie postacie jodu do klasy D, co oznacza szybką absorpcję jodu z płuc do krwi. Czas przechodzenia jodu z płuc lub z przewodu pokarmowego do krwi jest bardzo krótki (T $_{1/2} = 5$ min).

Jod jest pierwiastkiem niezbędnym dla prawidłowej czynności organizmu. Jest on akumulowany w tarczycy i służy jako budulec przy wytwarzaniu hormonów tyroksyny i trójjodotyroniny, które to hormony odgrywają decydująca rolę przy regulacji procesów przemiany materii w organizmie człowieka. Tarczyca jest dużym nieparzystym gruczołem wydzielania wewnętrznego, który jest położony od przodu od przewodu krtaniowo-tchawicznego obejmując go podkowiasto w przekroju poprzecznym. W warunkach prawidłowych gruczoł składa się z dwóch płatów bocznych, które są połączone cienkim pasmem tkanki tarczycowej zwanym węziną lub cieśnią. Kształt gruczołu tarczycowego przypomina literę H, przy czym długie ramiona litery są silnie skrócone i tępo zaokrąglone ku dołowi, a ku górze rozchodzą się obejmując krtań i gardło. Odległość między tępym biegunem dolnym a

ostrym biegunem płatów bocznych wynosi od 3-4 cm, natomiast szerokość płatów waha się od 2 do 2.5 cm. Wymiary cieśni tarczycy są bardzo różne, ale przeciętnie jej długość wynosi 2 cm, szerokość 2 cm, a grubość ok. 0.5 cm. Z reguły gruczoł jest większy u kobiet, a mniejszy u mężczyzn [47].

Cały gruczoł tarczycowy otoczony jest dość ściśle przylegająca torebką złożoną z tkanki włóknistej, która wnika do miąższu tarczycy tworząc nieregularne, mniej lub bardziej wyraźne rzekome zraziki [47]. Od tchawicy tarczyce oddziela cienka warstwa tkanki łacznej. Waga oraz objętość tego gruczołu zmienia się w zależności od wieku oraz poziomu jodu oddziela stabilnego w diecie oraz również od warunków chorobowych. Waga tarczycy dla dorosłego człowieka wynosi średnio 18.3 g i zmienia się w zakresie od 20 do 62 g . Do obliczeń modelowych przyjmuje się wartość 20 g [49]. Miąższ gruczołowy składa się z pęcherzyków o średnicy 80-200 µm (przeciętnie 200 µm). Wielkość i kształt pęcherzyków są zmienne i zależne od aktywności wydzielniczej. Dwadzieścia do piećdziesieciu pecherzyków tworzy tzw. gronka, które wykazują dużą zmienność czynnościową, tak że w tym samym gruczole niektóre gronka mogą wykazywać cechy aktywności wydzielniczej, a inne znajdować się w fazie spoczynkowej. Pęcherzyki wysłane są jednowarstwowym nabłonkiem kostkowym. Komórki wydzielające do światła pęcherzyka są sześcienne, natomiast wydzielające do naczyń krwionośnych są walcowate, a w stanie spoczynku nabłonka są przeważnie płaskie, przy czym komórki nabłonka w okresie wydzielniczo-czynnym przybierają kształt walcowaty, a w okresie spoczynku stają się płaskie. Każdy płat gruczołu składa się z około 4×10^7 pęcherzyków. Wnętrze pęcherzyków wypełnia lepka, przejrzysta substancja, zwana koloidem, która zawiera zapasy hormonów tarczycowych w postaci związanej ze swoistymi białkami. Koloid zawiera tyreoglobulinę będącą glikoproteidem zawierającym jod nukleoproteid z arsenem i fosforem. Białka koloidu połaczone z jodem wykazuja w różnym stopniu działanie hormonalne. Unaczynienie tarczycy jest bardzo silnie rozwinięte, a krew dopływa 2 tętnice tarczycowe górne i 2 tętnice tarczycowe dolne [49]. Formowanie hormonów przebiega w kilku fazach. Jod zawarty we krwi jest wychwytywany przez komórki nabłonka w których jest utleniany i następnie wiązany przez aminokwas tyrozyny do monotyrozyny (MIT) i dwutyrozyny (DIT). Oba te związki są łączone i tworzą tyroksynę (2 DIT) lub trójodotyroninę (1MIT+2DIT).

Tyroksyna i trójjodotyronina są łączone z białkiem tyroglobuliny i gromadzone w koloidzie w centrum pęcherzyków. Pod wpływem hormonu stymulującego TSH związek tyroglobuliny rozpada się i tyroksyna oraz trójodotyronina są uwalniane do krwi, gdzie łączą się w jodowe kompleksy białkowe.

Jodowe kompleksy białkowe wchodzą do komórek organizmu wpływając na ich procesy metaboliczne. Normalna tarczyca dorosłego człowieka zawiera około 8000-12000 μ g (400 μ g g⁻

20

¹) stabilnego jodu, który to poziom pozostaje stały, a dzienny zapotrzebowanie tarczycy wynosi około 70 μ g d⁻¹ jodu. Obniżenie tego poziomu powoduje rozwinięcie się zmian endemicznych w tarczycy. Ze stosunku 70 μ g d⁻¹ /8000 μ g wynika czas połowicznego zaniku biologicznego w tarczycy równy 79 d.

Przy dziennej podaży jodu z dietą rzędu 200 µg d⁻¹, cały jod wychwytywany przez tarczycę jest zużywany do produkcji hormonów. Przy stałym poziomie akumulacji jodu przez tarczycę i stałej prędkości wychwytu (70 µg d⁻¹ /200 µg d⁻¹), procentowy wychwyt przez tarczycę izotopów radioaktywnych jodu będzie zależał od dowozu jodu w diecie. Przy dziennej podaży jodu równej 100 µg, procentowy wychwyt ¹³¹I wynosi około 45%, przy dziennej podaży równej 200 µg wynosi 27%, podczas gdy przy dziennej podaży jodu rzędu 500 µg procentowy wychwyt ¹³¹I wynosi 13% *[45]*.

Większość jodu związanego organicznie (tyroksyna) jest przetwarzana w procesach metabolizmu komórek w organizmie i jest zwracana do krwi w postaci jodu nieorganicznego (jodki). Zatem część jodu podlega recyrkulacji i wraca z powrotem do gruczołu tarczycowego. Około 20% (14 μ g d⁻¹) jodu organicznego jest wydalana z kałem, głównie tyroksyna, która w procesie przemian w wątrobie przechodzi do żółci. Poziom jodu organicznego w ciele dorosłego człowieka zawiera się w granicach od 500 μ g do 1200 μ g. Do obliczeń modelowych przyjmuje się wartość 800 μ g \div 1200 μ g (10% zawartości jodu w gruczole tarczycowym). W oparciu o to założenie szacuje się, że czas połowicznego zaniku biologicznego jodu w organizmie jest równy 7.9 dni, co zgadza się z czasem połowicznego zaniku tyroksyny (6.6 \div 9.2 dni) *[51]*. Ilość jodu w ciele dorosłego człowieka jest w stanie równowagi, co oznacza, że całkowita ilość jodu wydalana z moczem i kałem jest równa dziennej podaży jodu . Największa część jodu około 90% jest wydalana z moczem *[45]*, *[52]*.

Nie ma do tej pory jednolitych ustaleń odnośnie wielkości parametrów opisujących metabolizm jodu u dzieci i noworodków. Jest to nadal przedmiot kontrowersji i badań różnych ośrodków naukowych. Zauważono 2.5 razy większy niż u dorosłego procentowy wychwytu ¹³¹I u noworodków, wynosi on 70% w zakresie 46%-94% *[53]*, *[54]*. Badania przeprowadzone w innych ośrodkach nie potwierdzają tej zależności, dla grup wiekowych dziecko 1 rok, dziecko 10 lat i nastolatków procentowy wychwyt ¹³¹I zmienia się w zależności od diety (dziennej podaży jodu stabilnego) i nie jest reprezentatywny dla danej grupy wiekowej *[58]*.

Stwierdzono natomiast, że okres biologicznego połowicznego zaniku jodu w tarczycy zmienia się z wiekiem w zakresie 20 dni dla 1 rocznego dziecka do 80 dni dla 10 latka [55].

Opis matematyczny rozkładu jodu w różnych narządach i tkankach wymagałby rozwiązywania układu równań różniczkowych z szeregu przedziałów takich jak:

- przedziały tarczycy (jod nieorganiczny i organiczny, hormony produkowane w tarczycy);
- przedziały całego ciała (jod nieorganiczny i organiczny, płyny między komórkowe, narządy wewnętrzne, gruczoły)
- przedziały wydalania (mocz, wydychane powietrze, pot, ślina i kał) [49], [50].

Układ ten liczyłby kilkanaście równań różniczkowych, oddzielnie zapisanych dla jodu radioaktywnego i stabilnego. Wyjątkową trudność stanowiłoby znalezienie parametrów fenomenologicznych opisujących przejścia jodu między przedziałami oraz ustalenie warunków brzegowych. Z tych też względów modele metabolizmu jodu w organizmie człowieka ogranicza się do pewnych przedziałów zbiorczych charakteryzujących się gromadzeniem i usuwaniem jodu w określonej postaci fizykochemicznej (tzn. jodu związanego organicznie i jodu nieorganicznego). Do celów oceny narażenia od skażeń wewnętrznych od promieniotwórczego jodu zalecany jest prosty, opisywany dwuskładnikową funkcją wykładniczą model ICRP 30 przeznaczony do określania dawek dla osób dorosłych (narażonych zawodowo) [59], [60]. Nie jest on użyteczny do oceny narażenia populacji po uwolnieniach radioaktywnego jodu do środowiska, gdzie zachodzi konieczność uwzględnienia różnych grup wiekowych, zmiennego dopływu jodu stabilnego z dietą lub blokady jodem stabilnym.

Z powyższych względów przy opracowywaniu modelu CLRP posłużono się pięcio-przedziałowym modelem metabolizmu jodu, zaproponowanym przez J.R.Johnsona *[50]*, który to model pozwala na ocenę wpływu zapobiegawczej dawki jodu stabilnego i dziennej podaży jodu stabilnego na wielkość dawki pochłoniętej, uwzględnia również parametry metabolizmu jodu dla dzieci i niemowląt, co wydaje się szczególnie istotne przy ocenach dawek populacyjnych.

Rysunek 1.7—1: Model metabolizmu jodu w tarczycy wg. Johnsona. (Parametry człowieka standardowego).

Rysunek 1.7—1 przedstawia blokowy schemat metabolizmu jodu w organizmie człowieka z uwzględnieniem :

a) Przedziału przewodu pokarmowego,

 Model zakłada, że całkowita ilość jodu pobieranego drogą pokarmową jest prawie natychmiast wchłaniana do krwi z szybkością 192 [d⁻¹], co odpowiada biologicznemu okresowi połowicznego zaniku jodu w przewodzie pokarmowym równym 5 min.,

b) Przedziału płuc

Wg. ICRP Task Group on Lung Dynamic [48] wszystkie składowe jodu występujące w powietrzu zaliczają się do tzw. klasy inhalacji D, co oznacza, że niezależnie od procentowego

udziału poszczególnych postaci jodu tzn. aerozolowej, elementarnej I oraz organicznej CH₃I; średnio 66% wdychanego radiojodu jest zatrzymywane w płucach. Czas połowicznego biologicznego zaniku jodu w płucach wynosi podobnie jak dla przewodu pokarmowego 5 min.

c) Przedziału nieorganiczny,

Szybkość wydzielania jodu z przedziału u nieorganicznego, tzn. jodu zawartego we krwi i nie związanego organicznie, przyjęto jako stałą i niezależną od wieku, masy ciała lub dziennej podaży jodu. Biologiczny półokres odpowiadający jest równy 0.36 d. (Model ICRP - 0.25 d.). Założono, że szybkość wychwytu jodu przez tarczycę (s_2), jest proporcjonalna do masy ciała człowieka M_s i jest równa dziennej produkcji jodu związanego w tyroksynie i trójjodotyroninie., Dla człowieka standardowego o masie ciała równej 70 kg, przyjmuje się, że (s_2) jest równe 65 µg d⁻¹. Efekt 10% obniżenia jodochwytności tarczycy na skutek podania dawki rzędu kilkudziesięciu miligramów stabilnego jodu nie jest uwzględniany przez ten model [56], [57].

Ponieważ szybkość wychwytu przez tarczycę radioaktywnego jodu (\mathbf{r}_2), maleje proporcjonalnie do stężenia jodu stabilnego w przedziale nieorganicznym, obliczone tym modelem dawki mogą być zawyżone o około 10%.

Szybkość wydzielania jodu w tarczycy (λ_3) jest obliczana zgodnie z założeniem, że wielkość (Mt - masa jodu związanego w tarczycy), jest proporcjonalna do masy tego gruczołu. Odpowiada to biologicznemu okresowi połowicznego zaniku jodu równemu : 31, 33, 68 i 128 dni odpowiednio dla dziecka w wieku 1, 5, 10 lat oraz człowieka standardowego i jest w przybliżeniu zgodne z danymi pomiarowymi [55].

e) przedziału organicznego,

Szybkość wydalania jodu z przedziału u organicznego ($\lambda_4 + \lambda_6$) = 0.058 d⁻¹ przyjmuje się niezmienną dla wszystkich grup wiekowych przy założeniu, że stężenie jodu w przedziale organicznym jest proporcjonalne do masy ciała. Wartości liczbowe stałych λ_4 i λ_6 zostały oszacowane w pracy [57], odpowiadający tej szybkością biologiczny okres 13 d jest zgodny z wartością przyjętą przez model ICRP 30.

f) Przedziału wydalania z moczem,

Szybkość wydalania jodu z moczem (λ_7) nie jest krytyczną wartością z punktu widzenia modelu dozymetrycznego ze względu na mały wkład dawki na pęcherz w porównaniu z dawką na tarczycę. Przyjęta wartość ciągłego wydalania jest wygodniejsza dla obliczeń numerycznych.

Tabela 1.7—2 przedstawia parametry metabolizmu jodu dla 6-ciu grup wiekowych zastosowane w modelu Johnsona.

Parametr matabalizmu	Grupa wiekowa						
r arameti metabolizmu	0	1	5	10	15	Kobieta	Mężczyzna
Masa ciała M _s [kg]	3.5	7	22	40	58.9	59	70
Masa tarczycy M _t [g]	1.6	2.1	4.4	7.9	12.1	17	20
Dzienny pobór jodu [µg d ⁻¹]	10	20	60	116	168	166	200
Zawartość jodu stabilnego w przedziale: Nieorganicznym [µg]: Tarczycowym [µg]: Organicznym [µg]:	5 300 56	10 300 120	32 990 350	60 3700 650	85 8300 940	84 10000 930	100 12000 1100
szybkość wychwytu jodu z płuc lub z przewodu pokarmowego $\lambda_1 [d^{-1}]$	192	192	192	192	192	192	192
Biologiczny pół-okres w tarczycy [d]	64	31	34	68	105	128	128
szybkość wychwytu jodu stabilnego przez tarczycę z przedziału nieorganicznego: $s_2=65 * (M_s/70) [\mu g d^{-1}]$	3.25	6.68	20.4	37.6	53.9	53.9	65
procentowy wychwyt przez tarczycę	22%	22%	22%	22%	22%	22%	22%
szybkość wydzielania jodu z tarczycy: $\lambda_3 = s_2 / M_t [d^{-1}]$	0.0109	0.0223	0.0206	0.0102	0.0066	0.0054	0.0054
szybkość wydalania jodu z przedziału organicznego do nieorganicznego λ_4 [d ⁻¹]	0.053	0.053	0.053	0.053	0.053	0.053	0.053
szybkość wydalania jodu z przedziału nieorganicznego do moczu $\lambda_5 [d^{-1}]$	1.92	1.92	1.92	1.92	1.92	1.92	1.92
szybkość wydalania jodu z przedziału organicznego do moczu λ_6 [d ⁻¹]	0.005	0.005	0.005	0.005	0.005	0.005	0.005

Tabela 1.7-2. Parametry metabolizmu jodu dla 6 grup wiekowych wg. Modelu Johnsona

2 ZACHOWANIE SIĘ CEZU W ŚRODOWISKU

2.1. Występowanie cezu

W przyrodzie występuje tylko jeden naturalny izotop cezu o masie atomowej 133. Jego zawartość w litosferze i hydrosferze ziemi jest bardzo mała. Średnio jego stężenie w skorupie ziemskiej wynosi : $3 \ \mu g \ g^{-1}$, $1 \ \mu g \ g^{-1}$ w skałach bazaltowych i $5 \ \mu g \ g^{-1}$ w granicie. Stosunek cezu do potasu w bazalcie wynosi 1/7500. W wodach słodkich jest go od 0.01 do 1.2 ng g⁻¹ a w wodach oceanicznych około 0.5 ng g⁻¹. Potas stabilny występuje obficiej niż cez , jego stężenie w wodach słodkich wynosi od 2 do 10 μg^{-1} , a w wodach oceanicznych około 380 μg^{-1} . Pierwiastek cez należy do grupy metali alkalicznych. W zachowaniu chemicznym wykazuje podobieństwo do rubidu i potasu a różni się od litu i sodu. Podczas gdy potas należy do istotnych pierwiastków dla człowieka, to cez nie ma znaczenia w metabolizmie organizmów żywych.

W wyniku rozszczepienia ciężkich jąder powstaje 11 izotopów promieniotwórczych cezu. Większość z nich to izotopy o bardzo krótkich okresach połowicznego zaniku (rzędu sekund i minut), nie mających znaczenia z punktu widzenia skażenia środowiska i narażenia populacji. Jedynie ¹³⁷Cs o okresie połowicznego rozpadu 30.17 lat może stanowić zagrożenie dla organizmów żywych jako źródło skażeń wewnętrznych i zewnętrznego napromienienia. Wydajność powstawania ¹³⁷Cs w wyniku rozszczepienia jest względnie wysoka , około 6 atomów na 100 rozpadów, niezależnie od typu rozszczepienia uranu ²³⁵U czy ²³⁹Pu : 6.21% dla ²³⁵U i 6.64% dla ²³⁹Pu przy rozszczepieniu neutronami termicznymi i 6.12% dla ²³⁵U i 6.50% ²³⁹Pu, 5.93% dla ²³⁸U i 6.73% dla ²³²Th przy rozszczepieniu neutronami prędkimi *[62]*.

¹³⁷Cez w 8% rozpada się z emisją cząstki β o energii maksymalnej 1.2 MeV i przechodzi w stabilny ¹³⁷Ba; w 92% emituje cząstki β o energii maksymalnej 0.52 MeV i w wyniku tego tworzy się metastabilny ^{137m}Ba o okresie połowicznego zaniku 2.6 min. Ten ostatni izotop po emisji kwantu γ o energii 0.661 MeV przechodzi w stabilny ^{137m}Ba, 11.8% kwantów tworzy elektrony konwersji wewnętrznej. Okres połowicznego zaniku ^{137m}Ba jest na tyle krótki, że praktycznie izotop ten znajduje się w stanie równowagi z ¹³⁷Cs. W stanie równowagi na jeden rozpad ¹³⁷Cs przypada 0.811 kwantów gamma.

Drugim izotopem cezu, który ma znaczenie w ochronie radiologicznej jest ¹³⁴Cs o okresie połowicznego rozpadu 2.06 lat. Izotop ten powstaje w reaktorach jądrowych w wyniku aktywacji neutronowej cezu stabilnego ¹³³Cs. Cez ¹³⁴Cs rozpada się w 70.2% z emisją cząstki β o energii 0.658 MeV i w 27.2% z emisją cząstki β o energii 88.5keV oraz 2.5% z emisją cząstki β o energii 0.415Mev (inne bety 0.89 MeV i 1.454 MeV znikome) i przechodzi w stabilny ¹³⁴Ba. Ten ostatni emituje gammy z których najsilniejsze to: 604.69 keV (98.21%), 795.84 keV (85.78%), 569.32 keV (15.54%) oraz 801.93 keV (8.7%), 563.23 keV (8.38%) oraz 1365.16 keV (3.015%). ¹³⁷Cs jest obecne w środowisku głównie w wyniku próbnych wybuchów jądrowych, uwolnień z elektrowni atomowych i zakładów przerobu paliwa jądrowego oraz awarii jadrowych, natomiast ¹³⁴Cs głównie w wyniku awarii reaktorów jądrowych.

Istnieje bogata literatura na temat akumulacji ¹³⁷Cs w środowisku i jego transportu, oparta na pomiarach przed i po awarii w Czarnobylu.

Wybuchy jądrowe

Próbne wybuchy jądrowe w atmosferze spowodowały szerokie rozprzestrzenienie się w środowisku produktów rozszczepienia i aktywacji. Intensywne pomiary opadu prowadzone są od lat sześćdziesiątych. Ocenia się, że około 9.6x10¹⁷ Bq ¹³⁷Cs zostało wprowadzone do atmosfery, z czego 76% zostało zdeponowane na półkuli północnej, a 24% na półkuli południowej *[66]*.

Elektrownie jądrowe

W czasie normalnej pracy ilość wytworzonej aktywności ¹³⁷Cs zależy od stopnia wypalenia paliwa jądrowego, typu paliwa oraz widma neutronów w reaktorze. Ocenia się że w przypadku wysoko wypalonego paliwa (33 000 MW[t] d t⁻¹) w reaktorze PWR, wytwarzanie ¹³⁷Cs wynosi 3.9 PBq na tonę paliwa, co odpowiada 130 PBq na GWa wytwarzanej energii elektrycznej. Niewielkie ilości produktów rozszczepienia mogą dostać się do obiegu chłodzącego w wyniku nieszczelności prętów paliwowych, skąd mogą przejść do układów odprowadzających wodę lub produkty gazowe. W kontrolowanych ilościach produkty rozszczepienia mogą przedostać się do środowiska.

Ocenia się że średnie ilości aktywności ¹³⁷Cs zawierają się w zakresie 5-60 GBq GW a⁻¹ dla PWR, 3-9000 GBq GW a⁻¹ dlla BWR i 1200-25000 GBq Gw a⁻¹ dla GCR *[66]*.

Awarie reaktorów jądrowych

Duże ilości cezu promieniotwórczego mogą być uwolnione do środowiska w wyniku awarii. Dotychczas wydarzyło się kilka awarii EJ, z których największe uwolnienie ¹³⁷Cs miało miejsce podczas awarii w Windscale i Czarnobylu *[17]*. Udział ¹³⁷Cs w ogólnej ilości substancji promieniotwórczych uwalnianych do środowiska jest znaczący (Tabela 2.1—1) i decyduje zarówno o narażeniu w okresie bezpośrednim po awarii jak również w ciągu kolejnych kilkudziesięciu lat.

Data i miejsce awarii	Uwolnienie ¹³⁷ Cs [Bq]	Udział ¹³⁷ Cs w aktywności uwolnionej
9.10.1957 r. Windscale Wlk. Brytania	2.2×10 ¹³	
29.09.1979 r. Kyshtym b.ZSRR	3.6×10 ¹⁴	0.036%
1967 r. Jezioro Karachay	2×10^{13}	
26.04.1986r. Czarnobyl b. ZSRR	7×10^{16}	20%

Tabela 2.1—1. Uwolnienia cezu w wyniku awarii elektrowni jadrowych.

Chemiczne powinowactwo cezu i potasu i sposobność jednoczesnego pomiaru obu izotopów ¹³⁷Cs i ⁴⁰K powodują, że często stężenie cezu wyraża się w stosunku do potasu , analogicznie jak stront do wapnia. Liczne badania wskazują jednak, że nie ma bezpośredniego związku pomiędzy stężeniem cezu i potasu i tak np. poziom potasu w diecie i ciele człowieka jest względnie stały (1.4 g w mleku i 2 g na kilogram ciała), podczas gdy stężenie ¹³⁷Cs zależy rodzaju diety, jej składu i wielkości spozycia. Stosunek ¹³⁷Cs/K w diecie jest względnie stały zarówno dla dzieci i dorosłych zamieszkujących tereny o podobnych skażeniach ¹³⁷Cs i różnice w całym ciele między grupami wiekowymi minimalizują się, gdy podawane są w jednostkach ¹³⁷Cs/K *[68]*.

2.2. DEPOZYCJA CEZU Z ATMOSFERY

W odróżnieniu od jodu, izotopy promieniotwórcze cezu występują w powietrzu tylko w postaci związanej z aerozolem. Widmo aerozolu zmienia się w zależności od czasu i odległości od źródła uwolnienia. Pomiary wykonane po awarii w Czarnobylu wskazują, że aerozol ten miał rozkład logarytmiczno-normalny i średnia rozkładu aerozoli $E(D_{ae})$ dla grupy tzw. pierwiastków lotnych : I (związany z aerozolem), Te, Cs, Ru równała się około 0.4÷1 µm z geometrycznym odchyleniem standardowym SD(D_{ae}) równym 3 µm w porównaniu z grupą pierwiastków o wysokich temperaturach topnienia, takich jak La, Ba, Ce, Zr, gdzie średnia rozkładu aerozoli $E(D_{ae})$ zawierało się w granicach 1-4 µm *[69], [23]*.

Cez na powierzchnię ziemi dociera w postaci opadu suchego oraz tzw. opadu mokrego powstającego w wyniku wymywaniu przez deszcz aerozoli unoszonych w powietrzu. Opad mokry ma znacznie większą prędkość osadzania niż opad suchy [22], [23].

Na prędkość depozycji wpływa szereg czynników zewnętrznych. Między innymi istotna jest odległość od miejsca uwolnienia. Przy większych odległościach od źródła uwolnienia średnica aerozolu jest mniejsza, gdyż aerozole grube opadają bliżej źródła uwolnienia. Wielkość tej

depozycji zależy również od rodzaju powierzchni. Po awarii w Czarnobylu mierzono opad cezu otrzymując różne współczynniki osadzania. Przedstawia je Tabela 2.2—1.

Typ powierzchni	Średnica aerozolu µm					
r yp powierzenin	0.01-0.1	0.1-1	1-5			
Gładkie powierzchnie (wykładziny chodnikowe, dachy)	2.00E-04	1.00E-04	2.00E-04			
Ściany pionowe	0.00E+00	3.00E-04	0.00E+00			
Szata roślinna uprawna	2.00E-03	1.00E-03	2.00E-03			
Pokrywa drzew leśnych	2.00E-02	1.00E-02	2.00E-02			

Tabela 2.2—1 Prędkość depozycji aerozolu [m/s] w zależności od rodzaju powierzchni.

2.3. CEZ W GLEBIE

Obecność w glebie długożyciowego ¹³⁷Cs ma istotne znaczenie dla skażenia łańcucha pokarmowego człowieka.

Duże skażenie gleby tym radionuklidem po awarii w Czarnobylu stworzyło dla rejonów Białorusi i Ukrainy szereg problemów ekonomicznych, spowodowanych ograniczeniem produkcji rolnej na tych terenach [70]. Zachowanie się cezu w glebie zależy od szeregu złożonych zjawisk fizycznych, chemicznych i biologicznych zachodzących w glebie i jest przedmiotem ciągłych badań eksperymentalnych i modelowych [71]. Prowadzone są liczne badania nad przechodzeniem cezu do roślin w zalezności od typu gleb i ich właściwości. Klasyfikacje gleb opiera się zazwyczaj na ich składzie granulo-metrycznym. Uwzględniając skład granulo metryczny wyróżnia się gleby piaszczyste, ilaste i glinę. W glebach piaszczystych dominująca jest frakcja o wielkości ziaren od 2 mm do 50 µm, w iłach od 50 µm do 2 µm, natomiast w glinie $< 2 \mu m$. W wielu glebach brak jest dominującej frakcji. W takim przypadku można klasyfikacje składu mechanicznego odczytać z trójkąta Fereta [72]. Występują również gleby z dużą zawartością substancji organicznej (próchnicze, torfy), nie zawierające składników mineralnych. Powyższy system klasyfikacji jest przyjęty i zalecany przez Międzynarodowa Unię Radioekologów i niewiele się różni od klasyfikacji stosowanej w Polsce [72]. Parametrem charakteryzującym właściwości gleby jest zawartość zasadowych kationów wymiennych (cation echange capacity, CEC), takich jak: K⁺, Na⁺, Ca²⁺, Mg²⁺. Na podstawie ich zawartości w glebie określa się całkowitą pojemność sorpcyjną gleby (milirown./g). Wartość ta zależy od uziarnienia gleby, składu mineralnego, zawartości substancji organicznej oraz od intensywności procesów fizycznych, chemicznych i biologicznych zachodzacych w glebie. Całkowita pojemność sorpcyjna gleby jest wskaźnikiem poziomu kationów wymiennych i ich dostępności dla roślin. Wielkość tego wskaźnika świadczy również o dostępności cezu. Gleby bogate w substancje organiczne charakteryzuje wysoka wartość CEC. W glebach zawierających od około 83% do 97% substancji organicznej wartość CEC jest bliska 1 milirówn./g, podczas gdy w glebach o zawartości substancji organicznej od 7 do 15%, CEC mieści się w zakresie od 0.12 do 21 milirówn./g [73]. Kationy wymienne zasorbowane przez substancję organiczną są wypierane łatwiej z fazy stałej gleby, a więc są one ruchliwsze niż kationy wymienne zasorbowane przez Ζ mineralna część kompleksu sorpcyjnego. tego powodu przechodzenie cezu promieniotwórczego do roślin z gleb bogatych w substancje organiczne jest znacznie większe niż z gleb o małej ich zawartości. Efekt ten jest łatwo zauważalny w środowisku leśnym, w którym warstwy powierzchniowe gleby (Ol, Of, Oh) zawierają dużo substancji organicznej. Rośliny czerpiące składniki pokarmowe z tych warstw wykazują duże skażenie ¹³⁷Cs. Migracja ¹³⁷Cs z warstw organicznych do warstw mineralnych (Ah, B) jest raczej powolna, gdyż radionuklid ten jest zatrzymywany w warstwie organicznej. Według Olsena i wsp. [74] i Gulillite i wsp. [75], w mikroflorze i grzybni rozwijających się w warstwach organicznych gleby leśnej może znajdować się do 40%¹³⁷Cs. Zatrzymywanie¹³⁷Cs w mikroflorze i grzybni powoduje, ze izotop ten nie migruje do głębszych warstw gleby. Podobnie jak w środowisku leśnym, na pastwiskach których powierzchniowa warstwa gleby jest bogata w substancje organiczne obserwuje sie duże przechodzenie ¹³⁷Cs do trawy również po długim czasie od chwili skażenia [76]. Wysoką pojemność wymienną wykazują również minerały obecne w glebie, a w szczególności zawarte w glinie. Ważny jest także rodzaj minerału. Trzy główne minerały: montmorilonit, illit i kaolinit maja powierzchnie odpowiednio 400-900, 50-300, 40-80 m²/g i odpowiednio zmienia się ich pojemność sorpcyjna. Izotopy promieniotwórcze mogą ulec desorpcji, która ułatwiaja jony K^+ i NH_4^+ o podobnych rozmiarach jak jony Cs^+ . Dzięki desorpcji cez może wrócić do roztworu glebowego i być dostępny dla roślin. Wyjątek stanowi illit, który szczególnie efektywnie sorbuje cez w przestrzeniach międzypakietowych i proces ten jest praktycznie nieodwracalny [77].

Cez trwale związany z glebą nie przechodzi do roślin , dowodzi tego obserwowany na przestrzeni kilkunastu lat szybszy spadek stężenia ¹³⁷Cs w roślinach niż należało by tego oczekiwać biorąc pod uwagę rozpad radioaktywny ¹³⁷Cs. Gleby nie zawierające dużych ilości minerałów illitu (np. gleby torfowe czy gleby bielicowe), wykazują mniejsze zdolności wiązania cezu i pozwalają na większe pobieranie cezu przez system korzeniowy roślin. Parametrem określającym wiązanie cezu z glebą jest szybkość ubywania frakcji dostępnej dla roślin,

wyrażona zwykle jako czas połowicznego zaniku $T_{1/2}$ cezu dostępnego dla roślin. Czas ten zmienia się w zależności od typu gleby, warunków klimatycznych, zawartości i rozkładu substancji organicznych w profilu pionowym gleby. W publikacjach różni autorzy podają następujące wartości $T_{1/2}$: 10 lat [86]; 2.6 lat ($2 \div 3$ lata) [88]), 1.29 lat dla gleby piaszczystej, 0.6 dla gliniastej [90]. W modelu rekomendowanym dla Europy Centralnej przyjmuje się $T_{1/2}$ =8.7 lat dla wszystkich rodzajów gleby [27]. Sorbcja cezu w osadach dennych jezior i rzek podlega tym samym procesom jak w środowisku lądowym z zaznaczeniem wpływu krzemianów na retencję cezu [88].

Drugim istotnym czynnikiem wpływającym na spadek stężenia cezu w roślinach jest migracja frakcji rozpuszczalnej cezu w głąb gleby w wyniku procesów wymywania przez opady atmosferyczne. Proces ten jest bardzo powolny. Ocenia się że po 3 do 4 latach od chwili depozycji średnia głębokość penetracji cezu wynosi około 2 cm [24]. Szybkość przechodzenia cezu do frakcji rozpuszczalnej jest większa w glebach organicznych.

Przykładowe prędkości migracji oraz $T_{1/2}$ dla cezu dla średniego opadu rocznego w Polsce 700 mm przedstawia Tabela 2.3—1.

Darametr	Typ gleby					
i arameu	Piaskowa	Ił	Glina	Torf		
Gęstość [kgdcm ⁻³]	1.4	1.4	1.5	0.5		
Θ -objętość porów gleby do całkowitej objętości gleby	30%	30%	30%	30%		
Kd- współczynnik frakcji absorbowanej do frakcji rozpuszczalnej radionuklidu	270	4400	1800	270		
V _{nuklidu} [cm/rok]	0.18	0.01	0.025	0.52		
T _{1/2} z 10 cm warstwy (pastwiska)	37.5 lata	610.0 lata	267.4 lata	13.4 lata		
T $_{1/2}$ z 25 cm warstwy (korzeniowej) ornej	94 lata	1525 lat	668 lat	33 lata		

Tabela 2.3—1. Przykładowe prędkości migracji cezu oraz wartość T_{1/2} dla warstw 10 i 25 cm gleby przy średnim opadzie rocznym w Polsce równym 700mm

Powyższe wartości nie uwzględniają rozpadu radioaktywnego. Wartości Kd dla poszczególnych rodzajów gleby wzięto z pracy *[21]*. Wartości teoretyczne mogą znacznie różnić się od danych eksperymentalnych ze względu na istnienie dodatkowych zjawisk przyśpieszających migrację radionuklidu takich jak mechaniczny transport drobin gleby przez pęknięcia w ziemi, uprawę gleby lub przemieszczanie gleby przez zwierzęta żyjące w ziemi i dziko żyjące. Czynniki te mogą wielokrotnie zwiększyć odpływ radionuklidu z warstwy korzeniowej. System RODOS *[27]* rekomenduje następujące wartości T_{1/2} z warstwy gleby 25 cm: 608 lat dla gleb ornych, 242 lata dla pastwisk o intensywnej uprawie, i 24 lata dla pastwisk o ekstensywnej uprawie.

2.4. PRZECHODZENIE CEZU DO ROŚLIN

Cez może przechodzić do rośliny w wyniku bezpośredniej depozycji na części nadziemne rośliny i przez system korzeniowy. Absorpcja cezu przez powierzchnię liści jest decydującą drogą skażenia rośliny przy wysokim opadzie radioaktywnym we wczesnej fazie skażenia środowiska i zmienia się w zależności od stopnia rozwoju części nadziemnej rośliny. Pobieranie cezu przez system korzeniowy ma znaczenie długoterminowe i w znacznej mierze zależy od właściwości gleby i rodzaju stosowanych w uprawie roślin praktyk agrotechnicznych.

Cez występuje w opadzie głównie w postaci aerozolu o zmiennym rozkładzie średnic cząsteczek, co ma wpływ na szybkość opadu oraz na stopień zatrzymywania radionuklidu przez roślinę. Podobnie jak w przypadku aerozolowej frakcji jodu, sugeruje się przyjęcie stałej wartości współczynnika zatrzymywania na częściach nadziemnych roślin równego 2.8 dla aerozolu o średnicach 0÷100 µm pojawiającego się w opadzie powybuchowym w znacznej odległości (>100 km) od źródła uwolnienia . Wartość tego współczynnika dla opadu mokrego zmienia się w granicach 1-10 i zależy od rodzaju deszczu (intensywność, średnica kropli) oraz rozmiarów powierzchni części nadziemnej rośliny [21], [28]. Na przykład frakcja opadu ¹³⁷Cs zatrzymywana przez trawę w okresie jej maksymalnego wzrostu (czerwiec) wynosi około 40%. Stężenie cezu na jednostkę biomasy rośliny maleje w wyniku różnych czynników atmosferycznych, jak wiatr i deszcz oraz w skutek zwiększenia biomasy w okresie wzrostu rośliny. Ze względu na trudności eksperymentalne w określeniu wpływu poszczególnych składników na szybkość usuwania radionuklidów z powierzchni roślin wprowadza się wielkość połowicznego czasu usuwania (environmental half-life) T_{1/2w}, który określa się na podstawie badań eksperymentalnych. Dla celów obliczeń modelowych przyjmuje się $T_{1/2w} = 14 \text{ dni } [30]$. Translokacja² cezu zaabsorbowanego przez liście lub kwiatostan rośliny, do części jadalnych rośliny, zależy od gatunku i fazy wzrostu roślin. Zjawisko to ma podstawowe znaczenie dla skażenia roślin w pierwszym roku po uwolnieniu substancji radioaktywnych oraz w sytuacji powierzchniowego skażenia roślin. Współczynnik translokacji definiuje się jako frakcję depozycji, która nastąpiła w czasie t dni od zbioru i znajduje się plonie (owoce, ziarno, korzenie, bulwy) w czasie zbioru. Tym samym funkcja translokacji uwzględnia procesy związane z usuwaniem radionuklidu przez czynniki atmosferyczne. Największa translokacja cezu do ziaren zbóż następuje na około 50 dni przed zbiorem i wynosi dla żyta 0.3, dla pszenicy ozimej 0.13, dla pszenicy jarej 0.05, natomiast dla bulwy ziemniaka na 90 dni przed zbiorem wynosi 0.35, a dla fasoli na 15 dni przed zbiorem wynosi 0.3 [21], [78]. Ścisła zależność współczynnika

² przejście radionuklidu absorbowanego na liściach przez tkanki okrywowe do liści, a dalej naczyniami do całej rośliny

translokacji od fazy wzrostu rośliny nie jest znana i brak jest dostatecznej liczby danych eksperymentalnych. W niektórych modelach środowiska [79], [80] przyjmuje się średnią wartość współczynnika translokacji dla całego okresu wegetacji rośliny równą 0.1 dla jodu oraz 0.45 dla cezu, niezależnie od typu rośliny i pory roku depozycji. W innych modelach przyjmuje się wartość współczynnika translokacji dla jodu taką samą jak dla Cs równą 0.1(i dla wszystkich tzw. mobilnych pierwiastków jak: Cs, I, Mn) oraz 50 razy mniejszą dla tzw. (mniej mobilnych pierwiastków jak: Sr, Ba, Zr, Nb, Ru, Ce i Pu) [27]. Dla roślin typu paszowego (koniczyna, lucerna, trawa, buraki pastewne), oraz warzyw liściastych, gdzie plonem jest cała roślina, przyjmuje się wartość współczynnika translokacji równą jedności.

Przechodzenie cezu przez nasadę rośliny ma znaczenie tylko w ciągu pierwszego roku po skażeniu *[81], [82]*. Pobieranie cezu przez system korzeniowy rośliny ma zasadnicze znaczenie po dłuższym czasie od uwolnienia radionuklidu do środowiska.

Współczynnik przechodzenia cezu z gleby do roślin (Transfer Factor – TF), wyrażony jako stosunek stężenia cezu w suchej masie rośliny do stężenia cezu w suchej glebie zawiera się w granicach 0.01 do 1 i silnie zależy od gatunku rośliny i typu gleby *[21]*. Ogólnie przyjmuje się, że następujące czynniki wpływają na pobieranie cezu przez korzenie roślin:

- Zawartość potasu w glebie. W badaniach prowadzonych dla gleb pastwiskowych i obszarów leśnych, zaobserwowano wyraźny spadek pobierania cezu promieniotwórczego przez korzenie roślin, przy zwiększonej zawartości jonów wymienialnych K⁺ i całkowitej zawartości potasu [76]. W pracy tej stwierdzono również zwiększone pobieranie cezu przy niższym pH. Zależności pobierania cezu przez rośliny od pH nie stwierdzono natomiast w pracy [87]. Inne prace wskazują na większe pobieranie cezu z gleb ubogich w potas. Nawożenie potasowe może zmniejszyć przechodzenie korzeniowe z gleb nienawożonych, natomiast zwiększenie stężenia potasu w glebach bogatych w ten pierwiastek nie zmniejsza pobierania cezu [24], [84], [85].
- Obecność substancji organicznej w glebie zwiększa pobieranie cezu przez system korzeniowy rośliny.
- 3. Obecność minerałów z grupy illitu zmniejsza one pobieranie cezu przez rośliny.

W pracy [87] określono wpływ niektórych własności gleby na wielkość pobierania cezu przez korzenie roślin. Przeprowadzono analizę statystyczną bazy danych współczynników przejścia gleba–roślina będącej w dyspozycji Międzynarodowej Unii Radiologów, biorąc pod uwagę około 770 pomiarów. Wyniki przedstawia Tabela 2.4—1.

wpływ pH współczynnika	wpływ za	wartość m gle	aterii orga bie	nicznej w	wpływ składu	ı granulometry	cznych gleby
kwasowości gleby	stosune zawarto TF dla subs	inek TF dla gleby o określonej rtości substancji organicznej do dla gleby o niskiej zawartości ibstancji organicznych <5%			stosunek TF dla trzech typów granulometrycznych gleby		n typów gleby
4.5-5.9 6.0-7.4	<5%	5-20%	21-51%	>50%	piaszczysta/ ilasta	piaszczysta/ gliniasta	gliniasta/ ilasta
brak efektu	1	2	4	10	3	5	3/5

Tabela 2.4—1. Wpływ właściwości gleby na współczynniki przechodzenia cezu z gleby do roślin.

Przedstawione współczynniki wskazują na znamienne statystycznie korelacje. Nie stwierdzono wpływu pH gleby na wielkość współczynnika przejścia gleba – roślina. Wysoka zawartość materii organicznej (> 50%) powoduje zwiększenie współczynnika przejścia gleba - roślina 10 razy w porównaniu z glebą o zawartości materii organicznej <5%. Dla gleb osadowych (ilastych) następuje trzykrotne obniżenia współczynnika przejścia gleba- roślina w stosunku do gleb piaszczystych, a dla gleb gliniastych 5-krotne obniżenie tego współczynnika w stosunku do gleb piaszczystych.

2.5. PRZECHODZENIE CEZU DO MLEKA, MIĘSA I NABIAŁU.

Metabolizm cezu w organizmie zwierząt hodowlanych był przedmiotem wielu badań *[35]*, *[36]*. W celu standaryzacji wyników wprowadza się umowną wielkość zwaną współczynnikiem przejścia do mleka lub produktu zwierzęcego F_x , jako frakcję dziennego wchłonięcia radionuklidu przechodzącego do jednego kilograma produktu zwierzęcego w warunkach równowagi. Otrzymywane w badaniach wartości współczynników przejść dla tego samego produktu mogą różnić się o rząd wielkości w zależności od składu pożywienia zwierząt, sposobu skażenia paszy i karmy. Skażenie może być sztuczne, gdy do paszy dodaje się roztwór radioizotopu, lub "naturalne" na przykład w wyniku awarii EJ. Obserwuje się również zmiany współczynników przejść w zależności od czasu jaki upłynął od skażenia, a okresem prowadzonych badań; wiąże się to z osiągniętym stopniem równowagowego stężenia cezu w produkcie zwierzęcym.

Badania współczynnika przejścia cezu do mleka prowadzone po wybuchach jądrowych dla krów wypasanych na pastwiskach i karmionych trawą, sianem lub lucerną wskazywały, że wartości tego współczynnika zawierają się w granicach $3 \div 5 \times 10^{-3}$ d L⁻¹ [98]. Przy zmianie składu

pożywienia zwierząt, polegającym na zwiększeniu udziału ziarna (80%), współczynnik przejścia cezu do mleka wzrastał czterokrotnie (12×10^{-3} d L⁻¹) *[100]*. Thumaczy się to zwiększonym przechodzeniem z przewodu pokarmowego do krwi spowodowanym większą biodostępnością cezu z ziarna. Podobne wartości współczynnika przejścia cezu do mleka otrzymano przy sztucznym skażaniu paszy cezem-135 (15×10^{-3} d L⁻¹) *[100]*.

Wartość współczynnika przejścia cezu do mleka rekomendowana przez MAEA przed awarią w Czarnobylu dla obliczeń modelowych, wynosiła 8×10^{-3} d L⁻¹ *[3]*. Analiza statystyczna wartości tego współczynnika dla pomiarów prowadzonych po Czarnobylu, przeprowadzona na podstawie 120 danych, wskazywała, że współczynnik przejścia jest równy $5.4\pm 0.5 \times 10^{-3}$ d L⁻¹ (mediana 4.7×10^{-3} d L⁻¹, odchylenie standardowe 1.9×10^{-3} d L⁻¹) *[36], [37],* przy rozpiętości współczynników od 1.910^{-3} d L⁻¹ do 18.7×10^{-3} d L⁻¹. Średnia wartość współczynnika była niższa od wartości rekomendowanej 8×10^{-3} d L⁻¹ przed awaria czarnobylską *[3],* co tłumaczy się faktem, że tylko część cezu pochodzącego z opadu czarnobylskiego (70%) była rozpuszczalna, a pozostałe nierozpuszczalne związki cezu były usuwane z kałem *[101].*

W eksperymencie przeprowadzonym na Węgrzech *[100]* otrzymano różniące się o rząd wielkości współczynniki przejścia do mleka w zależności od tego, czy pasza była skażona bezpośrednio przez opad ¹³⁷Cs pochodzenia czarnobylskiego ($1.6 \div 2.7 \times 10^{-3}$ d L⁻¹), czy była zbierana w następnym roku po awarii (w roku 1987). W tym drugim przypadku ¹³⁷Cs w trawie pochodził wyłącznie z gleby, a współczynnik przejścia z trawy do mleka wynosił $12 \div 20 \times 10^{-3}$ d L⁻¹. Również autorzy pracy *[102]* podają, że współczynnik przejścia pasza-mleko był kilka razy większy dla krów wypasanych na pastwisku w 1988 w porównaniu z tym samym stadem karmionym paszą skażoną przez opad ¹³⁷Cs z Czarnobyla i wynosił odpowiednio $15 \div 45 \times 10^{-3}$ d L⁻¹ i $1.4 \div 3.1 \times 10^{-3}$ dL⁻¹. Autorzy tłumaczą to lepszą przyswajalnością cezu inkorporowanego przez rośliny z gleby.

Z drugiej jednak strony w Niemczech [43] uzyskano prawie takie same średnie współczynniki przejścia do mleka: 2.8×10^{-3} d L⁻¹, 3.0×10^{-3} d L⁻¹, 2.7×10^{-3} d L⁻¹ w kolejnych latach 1986, 1987, 1988. Współczynnik przejścia pasza –mięso wołowe jest 3÷4 razy wyższy w porównaniu ze współczynnikiem przejścia pasza –mleko, jednak podlega on tym samym zależnościom jak współczynnik przejścia pasza –mleko. Wartość tego współczynnika określona przez [98] na podstawie pomiarów opadu powybuchowego wahała się w granicach $1.5 \div 3 \times 10^{-2}$ d kg⁻¹. Do obliczeń modelowych przed awarią w Czarnobylu rekomendowana wartość współczynnika przejścia wynosiła 2×10^{-2} d kg⁻¹[3]. Badania przeprowadzone w pracy [100] po awarii w Czarnobylu pokazały, że w przypadku karmienia krów paszą skażoną bezpośrednio opadem czarnobylskim współczynnik ten był znacznie niższy i wynosił $5 \div 7 \times 10^{-3}$ d kg⁻¹, podczas gdy w

przypadku karmienia krów paszą zbieraną rok po Czarnobylu współczynnik ten był wysoki i wynosił 9.6×10^{-2} d kg⁻¹. Badania innych autorów *[42]* wskazują, że współczynnik ten zawierał się w granicach $3 \div 4 \times 10^{-2}$ d kg⁻¹. Współczynnik ten dotyczy tkanek mięśniowych oraz żołądka, i jest kilkakrotnie niższy w tkance tłuszczowej *[71]*.

W wypadku mięsa wieprzowego współczynnik przejścia karma-mięso jest o rząd większy niż dla mięsa wołowego, co tłumaczy się inną karmą świń składającą się m.in. z serwatki i ziarna $3.5 \div 4.5 \times 10^{-1}$ dkg⁻¹, czyli karmą ze zwiększoną zawartością cezu biodostępnego [42],[43]. Badania innych autorów wskazują na wyraźną zależność tego współczynnika od diety tuczników [44]. Wartość tego współczynnika rekomendowana do obliczeń modelowych wynosi 2.4×10^{-1} d kg⁻¹ z zakresem (3.0×10^{-3} dkg⁻¹ ÷ 1.1 dkg⁻¹) [44], [21]. Wartość ta nie różni się od wartości otrzymywanych na podstawie opadu powybuchowego 2.4×10^{-1} d kg⁻¹ [35].

Badania współczynnika przejścia pasza-mleko dla owiec karmionych paszą skażoną opadem czarnobylskim [100] wskazują, że jest on 20 razy wyższy w porównaniu ze współczynnikiem przejścia pasza-mleko dla krów i wynosi około 30×10^{-3} d kg⁻¹. Współczynnik ten był 10 razy większy dla zwierząt karmionych paszą zbieraną rok po Czarnobylu i wynosił 320×10^{-3} d kg⁻¹ [100]. Autorzy fakt ten jest przypisują większej biodostępności cezu pobieranego przez rośliny z gleby niż cezu skażającego powierzchnię roślin. Badania innych autorów prowadzonych bezpośrednio po skażeniu trawy opadem czarnobylskim [41] [42] wskazują na zbieżność tego współczynnika z wynikami [61] (58×10⁻³ d kg⁻¹). Wartość równa 60×10^{-3} d kg⁻¹ została rekomendowana dla obliczeń modelowych [27], [42].

Współczynnik przejścia pasza-mięso dla owiec określano stosując zarówno paszę sztucznie skażoną roztworem ¹³⁴Cs, jak również na bazie pomiarów stężenia ¹³⁷Cs w trawie i mięsie zwierząt po awarii w Czarnobylu. Wartość tego współczynnika przy paszy sztucznie skażonej cezem wynosiła 130 ÷ 150 ×10⁻³ d kg⁻¹ dla dorosłych owiec oraz 5000 ÷ 500×10⁻³ d kg⁻¹ dla jagniąt. Współczynnik ten zmniejszał się z wiekiem jagniąt (1-8 miesięcy) *[35]*.

W pracy *[100]* otrzymano współczynnik równy 580×10^{-3} d kg⁻¹ dla dorosłych owiec, karmionych paszą bezpośrednio skażoną opadem czarnobylskim i wartość 1300×10^{-3} d kg⁻¹ dla zwierząt karmionych paszą zbieraną w następnym roku po awarii. W innej pracy podano wartość współczynnika pasza-mięso owiec równą 350×10^{-3} d kg⁻¹ jako wartość rekomendowaną *[44]*.

Współczynnik przejścia do jaj kurzych określony na podstawie sztucznie skażonej cezem Cs-134 karmy zawierał się w granicach³ 400 \div 600 \times 10⁻³ d kg⁻¹ *[35]*. Wartości otrzymane w badaniach po czarnobylskich zawierały się w granicach 100 \div 200 \times 10⁻³ d kg⁻¹ *[42]*. W publikacjach

³ Dla wagi jajka 50 g daje to przelicznik 20 w stosunku do współczynnika [d jajko⁻¹], zawartość cezu w skorupce około 2% całkowitej zawartości jest pomijalna.
rekomendujących wartości dla potrzeb modelowania współczynnik ten wynosi 400×10^{-3} dkg⁻¹ [44], [21].

Współczynnik przejścia ¹³⁷Cs do mięsa drobiowego z ziarna skażonego opadem czarnobylskim wynosił 1300×10^{-3} d kg⁻¹ [43]. W badaniach prowadzanych przy użyciu ziarna sztucznie skażonego cezem Cs-134 otrzymano wartość tego współczynnika 4 razy wyższą 4000×10^{-3} d kg⁻¹ [35]. W publikacjach rekomendujących wartości dla potrzeb modelowania współczynnik ten wynosi 4500×10^{-3} d kg⁻¹ z zakresem $300 \div 10000$ d kg⁻¹ [44], [21].

Zestawienie współczynników przejść cezu do produktów zwierzęcych oraz parametrów funkcji retencji cezu w tych produktach przedstawia Tabela 2.5—1.

Produkt	F_X \odot	α^{\oplus}	T [©] _{1/2szybka}	T ³ _{1/2wolna}	Odnośnik
	$1.9 \times 10^{-3} d L^{-1}$	0,742	2.3 d	35 d	VOORS. AND VAN WEERS 1991 [102]
Mleko krów	$2.3 \div 5.3 \times 10^{-3} d L^{-1}$	0.8	1.5 d	15 d	VOIGT ET AL 1988 [42]
	$3.0 \times 10^{-3} d L^{-1}$	0.8	1.5 d	15 d	Muller 1996 [27] [@]
	60×10 ⁻³ d L ⁻¹	0.8	1.5 d	15 d	VOIGT ET AL 1988 [42]
Mleko owiec	60×10 ⁻³ d L ⁻¹	1.0	2.2 d		Muller 1996 [27]
	58×10-3 d L ⁻¹	-	-	-	Assimakpoulos 1987 [61]
Mleko kozie	60×10-3 d L ⁻¹	0.8	1.5 d	15 d	MULLER 1996 [27]
Miaso krowia	$10 \times 10^{-3} \mathrm{d \ kg^{-1}}$	0		20÷30 d	VOIGT ET AL 1988 [42]
MIĘSU KIUWIE	$10 \times 10^{-3} \mathrm{d kg^{-1}}$	0		30 d	MULLER 1996 [27]
Mięso jałówka	$35 \div 40 \times 10^{-3} \text{ d kg}^{-1}$	0		50÷ 60 d	VOIGT ET AL 1988 [42]
Miaga walawa	$35 \div 40 \times 10^{-3} \text{ d kg}^{-1}$	0		30÷40 d	VOIGT ET AL 1988 [42]
wiięso wołowe	40×10 ⁻³ d kg ⁻¹	0		50 d	Muller 1996 [27]
Miaso gialoging	350÷400×10 ⁻³ d kg ⁻¹	0		25÷30 d	VOIGT ET AL 1988 [42]
พัทธุรับ ต่อยุตาแล	$350 \times 10^{-3} d kg^{-1}$	0		30 d	MULLER 1996 [27]
Mieso wieprzowe	350÷400×10 ⁻³ d kg ⁻¹	0		30÷40 d	VOIGT ET AL 1988 [42]
więso wiepizowe	$400 \times 10^{-3} \text{ d kg}^{-1}$	0		35 d	MULLER 1996 [27]
Mięso jagnięce	$500 \times 10^{-3} \mathrm{d \ kg^{-1}}$	0		20 d	MULLER 1996 [27]
Mięso owiec (baranina)	$300 \div 350 \times 10^{-3} \mathrm{d \ kg^{-1}}$	0		35÷40 d	Voigt et al 1988 [42]
Inia laurea	$300 \times 10^{-3} \mathrm{d \ kg^{-1}}$	0		3 d	MULLER 1996 [27]
Jaja kurze	400×10 ⁻³ d kg ⁻¹	-	-	-	Voigt et al 1988 [42]
Mięso z	$1300 \times 10^{-3} \mathrm{d \ kg^{-1}}$	1		18 d	Voigt et al 1988 [42]
kurczaków drobiowe	$4500 \times 10^{-3} \mathrm{d \ kg^{-1}}$	1		20 d	Muller 1996 [27]

Tabela 2.5—1. Parametry funkcji retencji cezu w niektórych produktach zwierzęcych.

[®] współczynnik przejścia do produktu zwierzęcego w warunkach równowagi

[®] udział składowej szybkiej

- ²⁰ półokres biologicznego zaniku składowej szybkiej
- ³ półokres biologicznego zaniku skladowej wolnej

[®] Wartości rekomendowane dla krajów Europy Centralnej w Ramach RODOS SYSTEM

2.6. METABOLIZM CEZU W ORGANIZMIE CZŁOWIEKA.

Cez do organizmu człowieka dostaje się głównie z pożywieniem. Droga inhalacyjna może być istotna jedynie w przypadku skażeń zawodowych i może mieć niewielkie znaczenia bezpośrednio po awarii jądrowej. W późniejszym okresie po uwolnieniu radionuklidów do środowiska droga inhalacyjna jest zaniedbywana. Przyjmuje się ze cez promieniotwórczy podany w formie rozpuszczalnej szybko i całkowicie wchłania się do krwioobiegu. W badaniach przeprowadzonych po awarii czarnobylskiej /103/ na grupie 10 osób stwierdzono, że przechodzenie z pożywienia do krwi jest mniejsze i współczynnik przechodzenia izotopow cezu (f₁) wynosi średnio 0.8. Według Międzynarodowych Norm Ochrony przed Promieniowaniem Jonizującym [104] współczynnik przechodzenia izotopów cezu zarówno drogą inhalacyjną jak i pokarmową jest równy jedności. Współczynnik równy jedności przyjmuje się również do oceny narażenia populacji [105]. Z badań prowadzonych na zwierzętach [106], [108] i ludziach [107] wynika, że z krwi cez szybko przemieszcza się do wszystkich tkanek organizmu. Zanim jednak zostanie osiągnięty stan równowagi, zawartość cezu w poszczególnych narządach jest różna. W organizmie człowieka w stanie równowagi cez rozmieszczony jest dość równomiernie. Podobnie rozmieszczony jest cez stabilny [110]. Cez rozprzestrzenia się szybko w komórkach organizmu człowieka i rozkłada się względnie równomiernie w tkankach człowieka. Liczniejsze badania dotyczą rozmieszczenia ¹³⁷Cs w poszczególnych narządach organizmu człowieka, mniej liczne dotyczą rozmieszczenia cezu stabilnego. Izotopy cezu nie podlegają frakcjonowaniu i istnieje korelacja między cezem-137 i cezem stabilnym [109]. Zawartość cezu stabilnego w organizmie człowieka waha się w zależności od zawartości cezu w diecie głównie w składnikach pochodzenia zwierzęcego tzn. mleka, nabiału, i mięsa [48]. Średnia zawartość cezu stabilnego w organizmie człowieka wynosi 1.4 mg z zakresem (0.5÷4.1 mg) [111]. Ocenia się że średnia podaż cezu stabilnego z dietą wynosi 10 μ g d⁻¹ [48]; poziom ten może być różny dla różnych regionów geograficznych i zmieniać się w szerokich granicach (3÷15 µg d⁻¹) /687. Pomiary przeprowadzone w Polsce wskazują, że podaż cezu stabilnego dla nastolatków w Polsce wynosił około 3 µg d⁻¹ /112].

Rozmieszczenie cezu stabilnego w organizmie człowieka i cezu ¹³⁷Cs jest podobne. Tabela 2.6—1 przedstawia dane literaturowe dotyczące rozkładu cezu w ciele człowieka.

	mięśnie	kości	inne narządy	Zawartość w całym ciele [mg]	Literatura
cez stabilny [x10 ⁻⁹ g/g]	29.5 11.1÷78.8	15.7 5.9÷41.4	12.7 3.7÷44.2	1.4 0.57÷4.1	[111]
cez stabilny [x10 ⁻⁹ g/g]	18.8±8.9	11.0±8.0	12.1±4.4	0.92±0.27	[110]
Cs-137 pci/100g ś.m.	19.1±8.1	3.2±1.6	9.6±2.9		[110]

Tabela 2.6-1: Rozmieszczenie cezu w ciele człowieka

Cez wydalany jest z organizmu głównie przez nerki, a częściowo przez przewód pokarmowy. Szereg autorów obserwowało względną stałość stosunku ¹³⁷Cs w kale do moczu *[114], [115], [116], [117]*. W zaleceniach Miedzynarodowej Komisji Ochrony Radiologicznej [ICRP 10] *[118]* przyjęto dla tego stosunku wartość 0.2, chociaż pojedyncze wyniki mogą bardzo odbiegać od tej wartości i mieścić się w granicach od 0.06 do 0.96.

Retencja cezu w organizmie człowieka może być opisana matematycznie przy pomocy funkcji wykładniczych. Każda z tych funkcji odnosi się do pojedynczego przedziału. W modelu pięcioprzedziałowym wyróżnia się : (plazmę i płyn międzykomórkowy)^①, (wydaliny)^②, (przewód pokarmowy, wątroba, nerki, śledziona, serce, płuca)^③, (kości, czerwone ciałka krwi)^④, (mięśnie, gonady)^⑤, [103], [120].

Modele te mają znaczenie raczej teoretyczne i ze względu na dużą liczbę i niepewność używanych parametrów nie są stosowane w ochronie radiologicznej. Do opisu retencji cezu w organizmie człowieka stosuje się aproksymację za pomocą sumy dwóch funkcji wykładniczych wg wzoru :

$$R(t) = a \times \exp\left(-\frac{\ln(2)}{T_1} \times t\right) + (1-a) \times \exp\left(-\frac{\ln(2)}{T_2} \times t\right)$$

gdzie:

- R(t) jest częścią aktywności w (stosunku do jednorazowego wchłonięcia) zawartej w ciele po czasie t od wchłonięcia .
- a, a-1 frakcje początkowo wchłoniętej aktywności stowarzyszone z dwoma hipotetycznymi przedziałami metabolizmu, które razem tworzą całkowitą aktywność w ciele.
- $T_1,\,T_2\,$ półokresy biologicznego zaniku cezu w tych przedziałach.

W publikacji ICRP 30 [60] rekomendowane są wartości następujące: a=0.1, $T_1=2$ dni, $T_2=110$ dni jako typowe dla człowieka standardowego.

Z przeprowadzonych badań wynika że parametry opisujące metabolizm cezu w człowieku zmieniają się w szerokim zakresie w zależności od wieku, płci, i innych cech osobniczych tak że standardowy model stosowany dla specyficznych grup ludności może dawać znaczące różnice. W szczególnych przypadkach, gdy pozwalają na to dane eksperymentalne, identyfikuje się trzy składowe: szybką (T_1), średnią (T_2) oraz wolną (T_3).

$$R(t) = a_1 \times \exp(-\frac{\ln(2)}{T_1} \times t) + a_2 \times \exp(-\frac{\ln(2)}{T_2} \times t) + a_3 \times \exp(-\frac{\ln(2)}{T_3} \times t)$$

gdzie spełniona jest zależność:

$$a_1 + a_2 + a_3 = 1$$

Tabela 2.6—2 ilustruje zmienność wyżej wymienionych parametrów w zależności od cech osobniczych [129].

Prowadzono liczne badania w celu wyjaśnienia zmienności parametrów retencji u ludzi. McCraw (1965)*[132]* rozwinął model, który wyraża okres połowicznego wydalania (wolna składowa) cezu z organizmiu człowieka jako funkcję rosnącą wieku. Inni autorzy (Eberhart *[128]*, Cryer *[129]*) wiązali okresu połowicznego wydalania z masą ciała. Lloyd *[125]* zwracał uwagę na słabą korelację między wagą ciała i okresem biologicznego wydalania dla grupy osób dorosłych i na możliwość istnienia innych czynników. Biorąc pod uwagę chemiczne podobieństwo cezu i potasu, stosunek ¹³⁷Cs/K w ciele odnoszono do stosunku ¹³⁷Cs/K w diecie, mleku, wydalinach, lub moczu *[133]*, Leggett *[130]* uznał, ze ten sposób oceny zawartości ¹³⁷Cs w ciele człowieka jest zbyt dużym uproszczeniem, natomiast uwzględnienie zawartości potasu w całym ciele może być użyteczne w określaniu funkcji retencji.

Na podstawie wartości T_1 i T_2 innych autorów (Tabela 2.6—2), Legget *[130]* opracował model aproksymacji parametrów dwuskładnikowej funkcji retencji dla 6 grup wiekowych. Za podstawę przyjęto założone zawartości potasu w ciele dla różnych grup wiekowych: 11.4 g (wiek 3 miesiące); 20.8 g (wiek 1 rok); 42.7 g (wiek 5 lat), 71.0 g (wiek 10 lat), 131.4g (wiek 15 lat) i 150g (dorosły).

Otrzymane w ten sposób parametry funkcji retencji cezu zostały rekomendowane w publikacji ICRP 56 [131]. Przedstawia je Tabela 2.6—3.

h										
		Ilość								
		potasu								
Wiek	Waga	wciele	Płeć	21	T.[dni]	80	T ₂ [dni]	82	T ₂ [dni]	Literatura
[lat]	[kg]	V	1100	a	Tilani	a ₂	1 2[um]	az	1 3[um]	Literatura
		g								
33	81.8		m	0.15	1.39			0.846	110	[123] Richmond
35	77.3		m	0.122	1.46			0.879	131	[123] Richmond
37	57		m	0.129	1.13			0.87	116	[123] Richmond
27	68.2		m	0.106	1			0.896	147	[123] Richmond
4	19.1	399	m	0.155	1.7	0.399	16.2	0.446	29.9	[124]Lloyd
4	18.0	39.1	m	0.234	1.1	0.159	10.4	0.607	29.2	[124]Lloyd
10	31.8	70	m	0.158	1.7	0.146	15.5	0.696	43.9	[124]Lloyd
19	66.4	140.8	m	0.149	2.1			0.851	90.4	[124]Lloyd
25	69.6	155.2	m	0.091	0.9			0.909	91.7	[124]Lloyd
37	79.7	150.6	m	0.076	1.5			0.924	140	[124]Lloyd
53	73.5	121.3	m	0.191	3.8			0.809	81.5	[124]Lloyd
80	73	105.9	m	0.117	2.4			0.883	79.9	[124]Lloyd
14	50.2	82.8	f	0.12	1.5	0.178	10.1	0.702	75.4	[124]Lloyd
18	68.5	93.2	f	0.159	3.8			0.841	70.8	[124]Lloyd
28	66.5	103.7	f	0.104	4.9			0.896	119	[124]Lloyd
39	71.4	100.7	f	0.166	0.5	0.053	15.3	0.781	102	[124]Lloyd
52	60.2	92.7	f	0.031	0.6	0.136	9.0	0.833	86.9	[124]Lloyd
14	83.8	115.6	f	0.127	1.2	0.115	16.7	0.758	82.0	[124]Lloyd
18	55.5	88.2	f	0.223	3.7			0.777	72.2	[124]Lloyd
35	57.8	80.9	f	0.102	1	0.124	11.1	0.774	75.4	[124]Lloyd
39	54.8	82.7	f	0.196	2.4			0.804	69.5	[124]Lloyd
46	63.3	79.1	f	0.143	1.7	0.163	9.7	0.694	58.7	[124]Lloyd
47	56.6	91.1	f	0.076	1	0.099	13.8	0.825	86.1	[124]Lloyd
50	58.5	80.1	f	0.134	1.3	0.049	18.8	0.817	97.5	[124]Lloyd
5	18	36	m	0.135	1.8	0.226	18.7	0.639	34.3	[124]Lloyd
5	21	34	m	0.094	1.9	0.237	15.6	0.669	29.1	[124]Lloyd
7	20.6	29	m	0.207	1.6	0.657	14.9	0.136	27.2	[124]Lloyd
8	19	23	m	0.242	1.6	0.512	12.9	0.246	25.3	[124]Lloyd
13	37.9	29.2	m	0.047	1	0.896	16.9	0.057	42.3	[124]Lloyd
14	68.8	37.1	m	0.139	4.4	0.742	18.9	0.119	41	[124]Lloyd
16	19.8	21	m	0.353	3.7	0.57	17.4	0.077	38.9	[124]Lloyd
19	47.3	35	m	0.233	3.7	0.757	16.2	0.01	68.6	[124]Lloyd
34	50	73	m	0.166	2.3			0.834	71.2	[124]Lloyd
12	37.2	84.8	m	0.213	3.1			0.787	51.7	[124]Lloyd
26	86.5	122.8	m	0.143	1.6	0.065	10.4	0.792	97.2	[124]Lloyd
30	66.8	132.9	m	0.102	1.3	0.043	27.5	0.855	90.8	[124]Lloyd
44	76.0	75.2	m	0.195	2.6	0.233	17.4	0.572	67.3	[124]Lloyd
61	56.6	90	m	0.247	4.6			0.753	70.2	[124]Lloyd
29	58.8	62.9	f	0.254	4			0.746	47.5	[124]Lloyd
37	66.6	69.9	f	0.230	3.8			0.770	68.6	[124]Lloyd
19	14		f	0.214	2.7	0.796	9.8			[124]Lloyd
37	77.9		m	0.12	1			0.88	60	[114] Rundu
41	73.4		m	0.06	1			0.94	126	[114] Rundu
25-35			m	0.17	< 0.1			0.83	90	[114] Rundu
										[114] Rundu
25-35			m	0.12	<1.0			0.88	155	[126] Harrison
										[126] Harrison
28	73		m	0.12				0.88	89	[127] Naversten
28	72		m	0.14	0.7			0.86	80	[127] Naversten
31	83		m	0.04	<1.0			0.96	72	[127] Navarstan
38	80		m	0.03	<0.1			0.07	85	
50	00			0.03	<u>\0.1</u>			0.97	65	[12/] Naversten
45	7/4		m	0.14	<1.0			0.86	73	[127] Naversten
45	54.5		m	0.107	0.88			0.893	60	[121] Yamagata
										[121] Yamagata
45t			m	0.08	0.9		I	0.92	72	[122] Inuma

Tabela 2.6-2. Wartości parametrów metabolizmu w zależności od wieku i płci.

Grupa wiekowa	Dziecko 1 rok	Dziecko 2 lata	Dziecko 5 lat	Dziecko 10 lat	Dziecko 15 lat	Kobieta	Mężczyzna
Współczynnik składowej szybkiej		0.6	0.45	0.3	0.13	0.1	0.1
Czas połowicznego zaniku składowej szybkiej [d]		10	9.1	5.8	2.2	2	2
Czas połowicznego zaniku składowej wolnej [d]		17	30	50	93	110	110
Współczynnik równowagi [Bq/Bq d ⁻¹]	23.08	18.97	29.71	53.00	117.14	143.12	143.12

Tabela 2.6—3. Wartości parametrów metabolizmu cezu w zależności od wieku i płci na podstawie ICRP 56.

3 CEL PRACY

Niniejsza praca dotyczy narażenia człowieka od trzech najważniejszych izotopów promieniotwórczych jodu-131, cezu-137 i cezu 134, uwalnianych do środowiska w wyniku awarii jądrowych i rutynowych uwolnień z elektrowni jądrowych.

Celem niniejszej pracy było opracowanie modelu komputerowego do prognozowania skażeń środowiska i określania dawek dla populacji w okresie 50 lat od momentu uwolnienia.

Model ten umożliwia szybką ocenę dawek od promieniowania jonizującego i może służyć jako narzędzie do wspomagania decyzji dotyczących ochrony ludności w sytuacjach awaryjnych.

Cel ten obejmował następujące zadania:

- opracowanie i weryfikację procedur obliczeniowych dla opisu transportu ¹³¹I, ¹³⁷Cs i ¹³⁴Cs w środowisku lądowym, począwszy od warstwy przyziemnej powietrza, poprzez depozycję na powierzchni ziemi i przechodzenia do roślin i zwierząt,
- opracowanie modelu umożliwiającego prognozowanie przechodzenia ¹³¹I, ¹³⁷Cs i ¹³⁴Cs do narządów i tkanek ludzi i dawek w sześciu grupach wiekowych,
- opracowanie modelu do oceny ekspozycji zewnętrznej dla sześciu grup wiekowych
- 4. weryfikacja modelu w ramach międzynarodowych programow i danych pomiarowych z Polski
- 5. analiza stopnia dopasowania przewidywań modelu do wartości obserwowanych

4 MODEL CLRP – OPRACOWANIE ALGORYTMÓW OPISUJĄCYCH PROCESY TRANSPORTU RADIONUKLIDÓW W EKOSYSTEMIE LĄDOWYM CZŁOWIEKA

4.1. WPROWADZENIE

Opracowany model radiologiczny CLRP (Concentration Levels Rapid Prediction) ma postać komputerowego kodu napisanego w języku Visual Basic ver.5 jako aplikacja Ad-In i składa się z okien dialogowych i programów umożliwiających wymianę informacji z tzw. Plikiem Scenariusza, który jest zbiorem arkuszy kalkulacyjnych Excel 5.0. Powyższy kod komputerowy ma służyć do przewidywania skażeń w środowisku wskutek awaryjnego lub rutynowego uwolnienia substancji radioaktywnych oraz prognozowania dawek promieniowania dla populacji. Zadaniem tego modelu jest wspomaganie decyzji dotyczących np. ewakuacji ludności, pozostania w budynkach czy podania blokującej dawki stabilnego jodu.

W tej części pracy przedstawione zostały podstawowe drogi transportu radionuklidów w środowiska człowieka rozważane przez model CLRP oraz ich opis matematyczny. Przedstawione wzory mają charakter opisowy i zostały skonwertowane na subrutyny liczące kodu. Podano również parametry modelu użyte do obliczeń skażenia środowiska w Polsce po awarii w Czarnobylu.

Drogi przejść radionuklidu w środowisku człowieka uwzględnione przez model CLRP obrazuje Rysunek 4.2—1:, na którym przedstawiono główne komponenty ekosystemu człowieka, z zaznaczonymi możliwymi drogami transportu radionuklidów. Procesy transportu dynamicznego, tzn. zmieniające się w czasie w sposób ciągły przedstawiono strzałkami podwójnymi, procesy transportu dyskretne, czyli zmieniające się w sposób nagły - strzałkami pojedynczymi, procesy "sterowane" np. wprowadzenie środków zaradczych strzałkami o kolorze czerwonym. Rombami zaznaczono możliwe sposoby redukcji dawek.

Model określa dawki pochodzące z głównych dróg narażenia tzn.:

- 1) napromieniania zewnętrznego od chmury radioaktywnej oraz od skażenia powierzchni ziemi,
- napromieniania wewnętrznego od wdychania skażonego powietrza i od spożywania skażonych pokarmów.

Wielkość tych dawek będzie zależeć od rodzaju transportu izotopów promieniotwórczych w środowisku człowieka. W przypadku ekspozycji zewnętrznej na wielkość dawek będzie

wpływać wielkość depozycji (suchej i spowodowanej deszczem) oraz szybkość migracji izotopu w głąb gleby. W przypadku ekspozycji wewnętrznej na wielkość dawki będą miały wpływ złożone drogi przechodzenie radionuklidu w łańcuchach pokarmowych tzn.: depozycja →pasza →mleko →człowiek; depozycja →pasza →zwierzę→człowiek; depozycja →roślina→człowiek; itp.

Na podstawie danych o stężeniu radionuklidów w przyziemnej warstwie powietrza i danych o warunkach atmosferycznych, model oblicza wielkość depozycji radionuklidów na powierzchni ziemi, a następnie przebiegi czasowe stężeń radionuklidów w poszczególnych przedziałach ekosystemu lądowego człowieka, tzn. w glebie, roślinach uprawnych i pastewnych, tkankach zwierzat hodowlanych i produktach zwierzęcych takich jak mleko i mięso, zarówno przy krótkotrwałym jak i ciągłym typie skażenia. W modelu uwzględnia się większość istotnych dynamicznych procesów zachodzących w ekosystemie, takich jak wychwyt skażeń przez powierzchnię liści oraz usuwanie skażeń w wyniku działania czynników atmosferycznych, dynamikę wzrostu różnych gatunków roślin, przechodzenie skażeń z gleby do rośliny przez system korzeniowy, wymywanie skażeń z gleby oraz rozpad radioaktywny. Bierze się również pod uwagę zmienność niektórych parametrów w zależności od pory roku w której nastąpiło skażenie, np. zmiany biomasy roślin, czy karmy zwierząt hodowlanych oraz różne okresy zbiorów warzyw, żniw oraz sposoby uprawy gleby. W następnym etapie obliczeniowym, zostają określone wchłonięcia radionuklidów do wybranych narządów człowieka od funkcji czasu w zależności typu diety. Uwzględniono sześć grup wiekowych w populacji: dorośli, młodzież, dzieci w wieku 10-ciu i 5-ciu lat, dzieci 1-roczne oraz niemowlęta. Przy pomocy programu można uzyskać ocenę dawek w wybranym przedziale czasowym od: ekspozycji zewnętrznej (na podstawie obliczonych przez program wartości opadu całkowitego danego izotopu na powierzchnię ziemi), inhalacji (na podstawie danych o stężeniu danego radionuklidu w powietrzu) oraz ocenę równoważników dawek efektywnych od skażeń pokarmowych na podstawie obliczanych zawartości radionuklidów w ciele lub w narządzie krytycznym (np. tarczycy, w wyniku skażeń jodem promieniotwórczym). Wartości parametrów stosowane w modelu są określone w oparciu o dane pomiarów skażeń prowadzonych po awarii w Czarnobylu, jak również na podstawie danych literaturowych. Zmiana "on line" parametrów redukujących dawke, ma na celu symulacje wprowadzenia środków zapobiegawczych, co jest istotne przy komputerowym wspomaganiu działań decyzyjnych. Możliwa jest zmiana następujących parametrów:

1) dla dawki ekspozycyjnej od chmury

- a) współczynnik osłonności budynku od immersji w chmurze ①
- b) czas przebywania w budynku w stosunku do czasu przebywania poza nim.

2) dla dawki ekspozycyjnej od powierzchni ziemi

- a) współczynnik osłonności budynku od promieniowania gruntu ①
- b) czas przebywania w budynku w stosunku do czasu przebywania poza nim

3) dla dawki inhalacyjnej od chmury

- a) współczynnik filtracji budynku 2
- b) czas przebywania w budynku w stosunku do czasu przebywania poza budynkiem
- c) typ aktywności człowieka (prędkość oddychania)

4) dla dawki od skażeń pokarmowych

- a) czas wprowadzenia restrykcji na spożycie produktów żywnościowych, w tym również restrykcji dotyczących wypasu zwierząt
- b) procentowym współczynnikiem retencji radionuklidu w produktach żywnościowych po zastosowanym procesie kulinarnym.
- c) wprowadzenie blokady tarczycy wyrażone w ilości i czasie podanego jodu stabilnego.

① (stosunek dawki w budynku do dawki poza budynkiem - zależy od energii promieniowania danego radionuklidu, rodzaju budynku, typu zabudowy itp.)

^{© (}stosunek stężenia danego radionuklidu w budynku do stężenia na zewnątrz budynku- zależy od fizycznego i chemicznego składu radionuklidu w powietrzu, rodzaju budynku, typu zabudowy itp.)

4.2. SCHEMAT MODELU

Rysunek 4.2—1: Drogi przejść radionuklidu w środowisku lądowym człowieka rozważane przez model CLRP

4.3. ALGORYTMY MATEMATYCZNE MODELU CLRP

4.3.1 Średnie dzienne stężenie radionuklidu w powietrzu Cⁱ powietrze

Baza danych wejściowych w modelu CLRP może zawierać do 30 radioizotopów mierzonych w powietrzu i obejmuje większość znaczących z punktu widzenia narażenia populacji radionuklidów. Obliczenia przeprowadzane były na podstawie danych wejściowych obejmujących:

- 1) warunki atmosferyczne:
 - a) średnia prędkość wiatru (w dniu pomiaru),
 - b) średnia intensywność opadu (w dniu pomiaru),
 - c) dzienny opad deszczu,
- 2) średnie dzienne stężenia poszczególnych radionuklidów w powietrzu,
- charakterystykę rozkładu aerozolu tzn.: średnia i odchylenie standardowe założonego rozkładu logarytmiczno-normalnego
- 4) wysokość warstwy mieszania
- 5) skład fizyko-chemiczny radionuklidu^①.

Przykładową bazę danych wejściowych dla ¹³¹I mierzonego nad Warszawą w czasie awarii EJ w Czarnobylu przedstawiono w Tabela 4.3.1—1

① Na przykład dla promieniotwórczego jodu występują następujące frakcje: frakcja związana z aerozolem, jod elementarny I oraz I₂, kwas podjodawy HOI, oraz jod organiczny (gdzie jodek metylu CH₃I uważany jest za najprostszą formę).

	PRĘDKOŚĆ	DESZCZ	DESZCZ	¹³¹ I	Charakt Aero	erystyka ozoli	Wysokość	Skł	ad fizykochemic	zny
DATA	WIATRU [ms ⁻¹]	(intensywność opadu) [mm h ⁻¹]	(opad) $[mm d^{-1}]$	Stężenie w powietrzu [Bqm ⁻³]	Średnia E(D _{AE})	Odchylenie standardowe SD(D _{AE})	warstwy mieszania H _{MIX} [km]	Frakcja Aerozolowa	Frakcja Elementarna	Frakcja Organiczna
					լμո	[µm]		[Bqm ⁻³]	[Bqm ⁻³]	[Bqm ⁻³]
26-Apr-86			0	0.00E+00	0	0	0	0.00E+00	0.00E+00	0.00E+00
27-Apr-86	5	0	0	0.00E+00	0	0	0	0.00E+00	0.00E+00	0.00E+00
28-Apr-86	5	0	0	5.33E+01	1.4	2	1	1.60E+01	1.60E+01	2.13E+01
29-Apr-86	5	0	0	9.93E+01	1.45	1.5	1	2.98E+01	2.98E+01	3.97E+01
30-Apr-86	5	0	0	9.05E+01	1.45	1.5	1	2.72E+01	2.72E+01	3.62E+01
1-May-86	5	0	0	5.45E+00	1.4	1.5	1	1.64E+00	1.64E+00	2.18E+00
2-May-86	5	0	0	2.46E+00	1.4	1.5	1	7.40E-01	7.40E-01	9.80E-01
3-May-86	5	0	0	1.65E+00	1.4	1.5	1	5.00E-01	5.00E-01	6.60E-01
4-May-86	5	1	1.7	6.75E-01	1.3	1.5	1	2.00E-01	2.00E-01	2.70E-01
5-May-86	5	1	1.7	5.25E-01	1.35	1.5	1	1.60E-01	1.60E-01	2.10E-01
6-May-86	5	1	1.7	5.00E-01	1.3	1.5	1	1.50E-01	1.50E-01	2.00E-01
7-May-86	1	1	1.7	2.28E+00	1.3	1.5	1	6.80E-01	6.80E-01	9.10E-01
8-May-86	1	1	1.7	2.60E+00	1.3	1.5	1	7.80E-01	7.80E-01	1.04E+00
9-May-86	1	1	1.7	2.00E-01	1.3	1.5	1	6.00E-02	6.00E-02	8.00E-02
10-May-86	1	1	1.7	8.75E-02	1.3	1.5	1	3.00E-02	3.00E-02	4.00E-02
11-May-86	1	1	1.7	1.25E-02	1.3	1.5	1	1.00E-02	0.00E+00	1.00E-02

Tabela 4.3.1-1. Przykładowe dane wejściowe używane przez model CLRP

4.3.2 Opad promieniotwórczy całkowity D_{Calk}

Całkowity opad promieniotwórczy wyraża się sumą dziennych opadów suchych i mokrych.

$$D_{Calk} = \sum_{i=1}^{N} \left(D_{suchy}^{i} + D_{mokry}^{i} \right)$$

gdzie:

N - liczba dni trwania skażenia w powietrzu.

Opad dzienny suchy **D**ⁱ suchy

$$D_{suchy}^{i} = \left(C_{fa}^{i} \times V_{da}^{i} \right) \times \Lambda_{powierzchnia} + C_{fe}^{i} \times V_{de}^{i} + C_{fo}^{i} \times V_{de}^{i}$$

gdzie:

- Cⁱ _{fa}- średnie stężenie frakcji aerozolowej radionuklidu w powietrzu w i -tym dniu trwania skażenia
- Vⁱ_{da} prędkość osadzania się aerozolowej frakcji opadu suchego jako funkcja : prędkości wiatru i rozkładu aerozoli *[69][23];* Rysunek 4.3.2—2
- Cⁱ _{fe}- średnie stężenie frakcji pierwszego typu radionuklidu w powietrzu w i -tym dniu trwania skażenia
- Vⁱ_{de} prędkość osadzania się frakcji pierwszego typu radionuklidu jako funkcja rodzaju powierzchni osadzania
- Cⁱ _{fo}- średnie stężenie frakcji drugiego typu radionuklidu w powietrzu w i -tym dniu trwania skażenia
- (o organiczna frakcja dla jodu)
- Vⁱ_{do} = prędkość osadzania się frakcji drugiego typu radionuklidu jako funkcja rodzaju powierzchni osadzania; postaci fizykochemicznej radionuklidu [3], [21], [22]

Λ_{powierzchnia}- współczynnik korekcji typu powierzchni dla opadu suchego

Opad dzienny mokry D^{i}_{mokry}

$$D_{\text{mokry}}^{i} = C_{\text{powietrze}}^{i} \times H_{\text{mix}} \times (1 - \exp(\Lambda_{\phi}^{i} \times t_{\text{eff}}^{i}) \times \Lambda_{\text{powierzchnia}}$$

gdzie:

C¹ powietrze- średnie stężenie radionuklidu w powietrzu w i -tym dniu trwania skażenia,

tⁱ_{eff}- efektywny czas opadu obliczany jako stosunek dziennego opadu deszczu w i tym dniu opadu

Opⁱ [mm/d] do intensywności opadu Ipⁱ w [mm/s]

- Λⁱφ -efektywność osadzania [s⁻¹] jest funkcją intensywności opadu deszczu i rozkładu aerozoli,
 [69] Rysunek 4.3.2—3
- H_{mix} wysokość przyziemnej warstwy atmosferycznej powietrza tzw. warstwy mieszania [m]

Δ_{powierzchnia} -współczynnik korekcji typu powierzchni dla opadu mokrego

Z zamieszczonych poniżej wykresów widać że prędkość osadzania się opadu suchego oraz efektywność osadzania opadu mokrego (deszcz) są największe dla aerozolu "grubego" o średnicy powyżej 10 µm oraz osiągają znaczące wartości dla aerozolu "drobnego" poniżej 0.1 µm. Rozkład procentowy aktywności radionuklidu związanego z aerozolem o danej średnicy przedstawia Rysunek 4.3.2—1.

Rozkład ten można opisać za pomocą rozkładu log-normalnego. Związek pomiędzy średnią rozkładu $E(D_{ae})$ oraz odchyleniem standardowym $SD(D_{ae})$ a parametrami rozkładu logarytmiczno normalnego μ , σ jest następujący [6].

$$E(D_{ae}) = \exp[\mu + \rho^2 / 2]$$

SD(D_{ae}) = $\sqrt{\exp(2\mu + \sigma^2) \times (\exp(\sigma^2) - 1)}$

Rozkład ten zmienia się w trakcie przemieszczania się chmury skażeń w ten sposób że udział "grubego " i "drobnego" areozolu w powietrzu maleje a udział aerozolu "średniego" o średnicy około 1 µm wzrasta ze względu na mniejszą prędkość osadzania i efektywność wymywania przez deszcz tego ostatniego. Dodatkowym czynnikiem wpływającym na depozycję radionuklidu jest rodzaj powierzchni na której następuje osadzanie skażeń . Tabela 4.3.2—1 przedstawia wartości parametrów korekcyjnych dla różnych typów powierzchni [22] .

Typ powierzchni	Λ _{powierzchnia} - korekcji typu dla opad	współczynnik 1 powierzchni 1u suchego	Δ _{powierzchnia} -współczynnik korekcji typu powierzchni dla opadu mokrego		
	Pierv	viastek	Pierwiastek		
	Cs	J	Cs	J	
Rośliny liściaste: trawa, koniczyna	1.00	1.00	1.00	1.00	
Gładka powierzchnia (szosa, bruki)	0.16	0.18	0.60		
Pionowe ściany	0.02	0.12	0.01		
Dachy	0.65	1.27	0.50		
Pokrywa leśna (liściaste)	1.63	0.85	1.00		

Tabela 4.3.2—1. Wartości parametrów korekcyjnych typu powierzchni dla cezu i jodu.

Wartości prędkości osadzania się frakcji elementarnej V_{de}^{i} i organicznej jodu V_{do}^{i} podaje Tabela 4.3.2—2.

Tabela 4.3.2—2. Przyjęte wartości	prędkości osadzania	różnych form	jodu [1	ms-1	ĺ
-----------------------------------	---------------------	--------------	---------	------	---

Jod elementarny (I oraz I2	Jod organiczny (jodek metylu CH3I)
1.10E-02	5.00E-04

Rysunek 4.3.2—1.Procentowy udział aktywności¹³¹ I związanej z aerozolem w zależności od średnicy aerozolu. (Przyjęty dla warunków aerodynamicznych w Polsce 28-kwiecień 10-maj – 1986, Średnia rozkładu E(D_{ae}) = 0.4 μm, Odchylenie Standardowe SD(D_{ae})=3 μm

Rysunek 4.3.2—2. Prędkość osadzania opadu suchego Vⁱ_d w funkcji średnicy aerozolu D_{ae} i prędkości watru.

Rysunek 4.3.2—3. Efektywność osadzenia opadu mokrego Λ^{i}_{ϕ} w zależności od intensywności opadu i średnicy aerozolu.

4.3.3 Stężenie radionuklidu w jadalnej części roślin C_x

Stężenie radionuklidu w jadalnej części rośliny wyrażone jest zależnością:

$$C_{X} = C_{X}^{opad} + C_{X}^{gleba}$$

gdzie:

- C_x stężenie radionuklidu w jadalnej części rosliny [Bq kg⁻¹]
- X rodzaj rośliny (tzn. zboża (żyto, pszenica, jęczmień, owies), warzywa liściaste (sałata, kapusta), warzywa korzeniowe (marchew, ziemniaki, buraki), warzywa owocowe (fasola, pomidory), pasza(trawa, lucerna koniczyna) itp.
- Cx^{opad} bezpośrednie skażenie opadem
- Cx^{gleba} skażenie w wyniku przejścia z gleby

W wyniku bezpośredniego skażenia opadem C_x^{opad}

$$C_{X}^{opad}(t) = \sum_{\tau=1}^{t} D^{dzienny}(\tau) \cdot \frac{R_{X}(\tau) \cdot T_{x}(\tau)}{Y_{X}^{c}(\tau)} \cdot e^{-\lambda_{eff} \cdot (t-\tau)}$$

gdzie:

D(t)^{dzienny} -opad dzienny całkowity (suchy i mokry) [Bq m⁻²]

- R_X(t) funkcja frakcji opadu radioaktywnego zatrzymywanego przez część nadziemną rośliny
 [%] [28] (zależy od wielkości biomasy części nadziemnej , gatunku rośliny oraz wymywania przez deszcz)
- T_x (t) -funkcja translokacji opadu z części nadziemnej rośliny do plonu [m²/m²] [78] (zależy od stopnia rozwoju biomasy plonu i rodzaju rośliny)
- Y^c_x(t) funkcja rozwoju biomasy plonu^① rośliny (zależy od pory roku i rodzaju rośliny) [kg/m² świeżej masy]
- λ_{eff} stała usuwania radionuklidu z części nadziemnej rośliny w wyniku procesów atmosferycznych [28], [79].

① plonem rośliny nazywamy część rośliny wykorzystywaną przez człowieka np. ziarno dla zbóż, bulwy dla ziemniaków, liście dla sałaty, korzenie dla marchwi itp

Funkcja frakcji opadu radioaktywnego zatrzymywanego przez część nadziemną rośliny

$$R_x(t) = \left(1 - \exp\left[\left(-\mu(Op(t)) \cdot Y_X^a(t) \cdot M_X^a \right) \right] \right)$$

gdzie:

μ - tzw. stała Chaberlaina, określa zdolność zatrzymywania opadu radioaktywnego przez część nadziemną rośliny.

Dla opadu suchego przyjmowana jest stała wartość 2÷4 w zależności od typu rośliny. Dla opadu mokrego wielkość ta maleje proporcjonalnie do wielkości opadu według zależności:

$$\mu = \frac{N}{(Op)^{\chi}}$$

gdzie:

N - stała

Op - wielkość opadu atmosferycznego [mmd⁻¹]

 χ - współczynnik potęgowy opadu mokrego, przyjmowany w granicach (0.4-1). [21]

W wyniku przejścia z gleby C_X^{gleba}

$$C_X^{gleba}(t) = \sum_{\tau=1}^t D^{dzienny}(\tau) \cdot \frac{(1 - R_X(\tau))}{P_X^{gleba}(\tau)O(t_{orka})} B_X^{gleba} \cdot [\varepsilon e^{-\lambda_{eff}^s(t-\tau)} + (1 - \varepsilon)e^{-\lambda_{eff}^w(t-\tau)}]$$

gdzie:

D(t)^{dzienny} - opad dzienny (suchy i mokry) [Bqm⁻²]

- B_x^{gleba} współczynnik przejścia radionuklidu z gleby do plonu (zależy od typu gleby i gatunku rośliny) [3], [95],[24], [32]
- P_X^{gleba} współczynnik stężenia izotopu w glebie [kg/m²] \bigcirc
- O(torka) współczynnik redukcji stężenia radionuklidu w glebie w wyniku orki 3
 - ϵ , λ^s_{eff} , λ^w_{eff} współczynniki opisujące procesy zaniku frakcji radionuklidu dostępnego dla roślin@

② (masa 1 metra kwadratowego wierzchniej warstwy gleby o grubości równej głębokości zalegania depozyji suchej i mokrej w momencie skażenia gleby (zależy od gęstości gleby i początkowej głębokości zalegania radioizotopu w glebie)

③ (zależy od typu i czasu orki)

Imigrację radionuklidu w głąb gleby oraz procesy tzw. wiązania się części radionuklidu z glebą

ε- frakcja radionuklidu niezwiązana z glebą -dostępna dla rośliny;

 λ^{s}_{eff} – szybka stała zaniku frakcji radionuklidu niezwiązanej z glebą.

 λ^{w}_{eff} – wolna stała zaniku frakcji radionuklidu niezwiązanej z glebą

W obliczeniach modelowych przyjęto:

dla cezu :

dla trawy na podstawie oszacowań własnych

 $\epsilon = 68\%$, $\lambda_{eff}^{s} = [\ln 2/(0.7 \text{ lat}), \lambda_{eff}^{w} = [\ln (2)/(10 \text{ lat})]$

dla innych roślin

 $\varepsilon = 20\%$, $\lambda_{eff}^{s} = [\ln 2/(2 \text{ lata}), \lambda_{eff}^{w} = [\ln (2)/(10 \text{ lat})]$ [79],

dla jodu:

dla wszystkich roślin:

 $\epsilon = 20\%$, $\lambda^{s}_{eff} = [\ln 2/(2 \text{ lata}), \lambda^{w}_{eff} = [\ln (2)/(10 \text{ lat})]$ [79],

W przypadku skażeń roślin¹³¹I powyższe stałe nie mają znaczenia ze względu na krótki okres połowicznego rozpadu tego radionuklidu.

Przykładowy schemat transportu cezu w roślinie (pszenica jara) rozważany w modelu CLRP przedstawia Rysunek 4.3.3—3. Natomiast Rysunek 4.3.3—1 oraz Rysunek 4.3.3—2 przedstawiają generowany przez model CLRP rozwój roślin (odpowiednio pszenicy i ziemniaka) w cyklu rocznym dla warunków klimatycznych charakterystycznych dla rejonu Polski Centralnej [26].

Rysunek 4.3.3—1.* Rozwój pszenicy jarej w cyklu jednorocznym (Polska Centralna)

^{*} wygląd dialogu programu

Rysunek 4.3.3—2*. Rozwój ziemniaka wczesnego w cyklu jednorocznym (Polska Centralna)

* wygląd dialogu programu

Rysunek 4.3.3—3*. Schemat transportu cezu w pszenicy jarej.

* wygląd dialogu programu

4.3.4 Dzienne wchłonięcie radionuklidu przez zwierzęta Q

Dzienne wchłonięcie radionuklidu przez zwierzęta określone jest wzorem:

$$Q(t) = \sum_{k=1}^{dieta} C_Z^k(t) \times \Delta_k^{sezon}(t) \times F_k \times B_k(t) \times I^{zakaz}(t) \times e^{-\lambda_{izotop} \cdot T}$$

gdzie:

- $C^{k}_{Z}(t)$ stężenie radionuklidu w k-tym składniku diety gatunku Z w czasie t [Bq kg⁻¹],
- Δ^{sezon}_k sezonowa zmienna skokowa określająca dzienne spożycie danego składnika diety k przez zwierzę zależnie od pory roku [kd/d]
- F_k współczynnik retencji radionuklidu w k-tym składniku diety w wyniku procesów przetwarzania tego produktu [%].
- B_k(t) współczynnik biodostepności radionuklidu w k-tym składniku diety po czasie t od uwolnienia
- I^{zakaz}(t) funkcja czasowa przyjmująca wartość 0 do czasu przerwania zakazu na spożycie danego składnika diety k[®].

T_k- czas składowania składnika diety k [dni].

Wartości liczbowe karmy zwierząt hodowlanych (krowy, owce, trzoda chlewna) wykorzystane dla obliczeń modelowych przedstawiają Tabela 4.3.4—1, Tabela 4.3.4—2 oraz Tabela 4.3.4—3. W tabelach podano również użyte do obliczeń współczynniki retencji radionuklidu w wyniku procesów przetwarzania produktu. Przykład zmian diety zwierząt w cyklu hodowlanym dla krów oraz świń przedstawia odpowiednio Rysunek 4.3.4—2, Rysunek 4.3.4—1.

① Służy do modelowej optymalizacji czasu trwania zakazu

Składnik karmy		Okres pomiędzy zbiorem a	Wsp. przetw. składników diety [©]		Data zmiany	Względny współczynnik. biostępności [©]		Okres sezonowych zmian karmy krów [kg/dzień swieżej masy]					
		spożyciem			biodostepności			Ι	II	III	VI	V	VI
Produkt surowy	Produkt przetworzony	składnika	Jod	Cez		Jod	Cez	01 sty 31 mar	01 kwi 25 kwi	26 kwi 30 lip	31 lip 09 paź	10 paź 30 lis	01 gru 31 gru
trawa	wypas	00	1	1		1	1	0.00	0.00	50.00	50.00	0.00	0.00
trawa	siano	30	7	7		1	1	3.80	3.80	0.00	0.00	3.80	3.80
koniczyna	kiszonka	30	4.5	4.5		1	1	8.00	8.00	2.00	2.00	8.00	8.00
pszenica ozima	ziarno	10	1.0	1.0		1	1	0.95	0.95	0.80	0.80	0.95	0.95
jęczmień ozimy	ziarno	10	1.0	1.0		1	1	3.30	3.30	2.80	2.80	3.30	3.30
owies	ziarno	10	1.0	1.0		1	1	0.50	0.50	0.40	0.40	0.50	0.50
trawa	wypas	00	1.0	1.0	25 04 87	1	4.7	0.00	0.00	50.00	50.00	0.00	0.00
trawa	siano	30	7.0	7.0	01 10 87	1	4.7	3.80	3.80	0.00	0.00	3.80	3.80
trawa	kiszonka	30	4.5	4.5	01 10 87	1	4.7	8.00	8.00	2.00	2.00	8.00	8.00

Tabela 4.3.4—1. Składniki karmy krów.

[®] stosunek stężenia radionuklidu w produkcie przetworzonym do stężenia radionuklidu w produkcie surowym

[©] stosunek stężenia radionuklidu w podawanej paszy do stężenia w mleku w warunkach równowagi

Składnik ka	Składnik karmy		Wsp. przetw. składników Dat		Data zmiany	Względny współczynnik.		Okres sezonowych zmian karmy owiec [kg/dzień swieżej masy]					
		spożyciem	die	ty [®]	współczynnika biodostepności	biostęp	nosci	Ι	II	III	VI	V	VI
Produkt surowy	Produkt przetworzony	składnika	Jod	Cez		Jod	Cez	01 sty 31 mar	01 kwi 25 kwi	26 kwi 30 lip	31 lip 09 paź	10 paź 30 lis	01 gru 31 gru
trawa	wypas	00	1	1		1	1	0.00	0.00	4.50	4.50	0.00	0.00
trawa	siano	30	7	7		1	1	1.80	1.80	0.00	0.00	1.80	1.80
trawa	wypas	00	1.0	1.0	25 04 87	1	4.7	0.00	0.00	4.50	4.50	0.00	0.00
trawa	siano	30	7.0	7.0	01 10 87	1	4.7	1.80	1.80	0.00	0.00	1.80	1.80

Tabela 4.3.4-2. Składniki karmy owiec.

[®] stosunek stężenia radionuklidu w produkcie przetworzonym do stężenia radionuklidu w produkcie surowym

[®] stosunek stężenia radionuklidu w podawanej paszy do stężenia w mleku w warunkach równowagi

Składnik karmy		Okres pomiędzy zbiorem a	Wsp. przetw. składników		Wzg współc	Względny współczynnik.		Okres sezonowych zmian karmy trzody chlewnej [kg/dzień swieżej masy]						
		spożyciem	die	ty [®]	biostęp	nosci	Ι	II	III	VI	V	VI		
Produkt surowy	Produkt przetworzony	składnika	Jod	Cez	Jod	Cez	01 sty 31 mar	01 kwi 25 kwi	26 kwi 30 lip	31 lip 09 paź	10 paź 30 lis	01 gru 31 gru		
pszenica ozima	otręby	10	1.0	0.5	1	1	0.40	0.40	2.50	1.10	1.30	1.30		
pszenica jara	otręby	10	1.0	0.5	1	1	0.40	0.40	2.50	1.10	1.30	1.30		
jęczmień ozimy	otręby	10	1.0	0.5	1	1	0.30	0.30	0.75	0.80	1.30	1.30		
jęczmień jary	otręby	10	1.0	0.5	1	1	0.30	0.30	0.75	0.80	1.30	1.30		
mleko	serwatka	1	1.0	1.0	1	1	2.50	2.50	2.50	2.50	2.50	1.30		

Tabela 4.3.4—3. Składniki diety pokarmowej trzody chlewnej

[®] stosunek stężenia radionuklidu w produkcie przetworzonym do stężenia radionuklidu w produkcie surowym

[©] stosunek stężenia radionuklidu w podawanej paszy do stężenia w mleku w warunkach równowagi

Rysunek 4.3.4—1*. Przykładowy diagram dziennej diety zwierząt hodowlanych (krowy mleczne) w cyklu rocznym

Rysunek 4.3.4—2*. Przykładowy diagram dziennej diety zwierząt hodowlanych (tucz świń) w cyklu rocznym

* wygląd dialogu programu

4.3.5 Stężenie radionuklidu w produktach zwierzęcych Cz^{produkt}

Stężenie radionuklidu w produktach zwierzęcych wyrażone jest zależnością:

$$C_{Z}^{produkt}(t) = \sum_{\tau=1}^{t} Q_{Z}(\tau) \cdot \Re(t-\tau)$$

gdzie:

C_z^{produkt} - stężenie radionuklidu w produkcie [Bq kg⁻¹ świeżej masy]

Z – rodzaj produktu (np. mleko; wołowina, wieprzowina)

 $\Re(t)$ - funkcja opisująca metabolizm radionuklidu w organizmie zwierząt i ludzi

Funkcja $\Re(t)$ jest numerycznym rozwiązaniem 6-przedziałowego modelu metabolizmu radionuklidu w organizmie zwierząt i ludzi, opisywanym zbiorem równań różniczkowych pierwszego rzędu. Niektóre modele środowiska stosują do obliczeń stężeń radionuklidu w różnych produktach zwierzęcych uproszczone formuły w postaci dwu składnikowych funkcji wykładniczych *[28], [134], [27].* Parametry tych funkcji są ustalane na podstawie eksperymentów na zwierzętach *[102], [41].* Zastosowany w modelu CLRP algorytm obliczeniowy wymaga znajomości szybkości przejść radionuklidu między poszczególnymi przedziałami metabolizmu zwierzęcia, co wymaga bardziej szczegółowego opisu procesów wpływających na wielkość współczynników przejść Parametry te nie są dobrze poznane dla wielu zwierząt, stąd też w wielu przypadkach zastosowano obliczenia własne dobierając prędkości przejść tak, aby algorytm dawał w wyniku dwuskładnikową funkcję wykładniczą zgodną z parametrami podawanymi w literaturze. Rysunek 4.3.5—1, Rysunek 4.3.5—2 przedstawia diagram obrazujący drogi przechodzenia cezu i jodu w organizmie zwierząt na przykładzie krowy mlecznej.

Tabela 4.3.5—1, Tabela 4.3.5—2 przedstawiają parametry metabolizmu cezu i jodu dla zwierząt hodowlanych oraz parametry ekwiwalentnej funkcji retencji dla otrzymywanych z tych zwierząt produktów.

^{*} wygląd dialogu programu

	Paramet	ry metaboli	izmu zwier	zęcia dla c	kreślonego	produktu
Przedział metabolizmu	Mleko	Mleko owiec	Wołowina (mięso krów)	Cielęcina	Wieprzowina	Drób
Dzienny pobór cezu [µg d ⁻¹]	100	10	100	50	100	1
Masa ciała [kg]	500	45	500	150	200	3
Szybkość wydalania cezu z tkanek do płynów ustrojowych [d ⁻¹]	0.026	0.04	0.026	0.08	0.026	0.1
Szybkość wydalania cezu z płynów ustrojowych do tkanek [d ⁻¹]	0.066	0.08	0.066	0.12	0.066	0.2
Zawartość cezu stabilnego w przedziale: Płynów ustrojowych [µg]						
Tkanek (mięśni) [µg]	57.3	2.0	57.3	500	667	2
Mleku [µg]	145.4	3.9	145.4	750	1693	4
1	3.3	1.5	0	0	0	0
Szybkość wydalania mleka [L d ⁻¹]	17	3	0	0	0	0
Szybkość wydalania cezu z płynów ustrojowych do mleka [d ⁻¹]	0.057	0.75	0.057	0	0	0
Wydalanie moczu [L d ⁻¹]	33	3	33	10	5	0.2
Szybkość wydalania cezu z płynów ustrojowych do moczu [d ⁻¹]	0.17		0.17	0.07	0.15	0.5
Parametr	y ekwiwal	entnej funk	cji retencj	i		
Współczynnik składowej szybkiej	68%	80%	7%	1%	1%	1 %
Czas połowicznego zaniku składowej szybkiej [d]	2.3	0.81	2.32	2.8	3.1	0.9
Czas połowicznego zaniku składowej wolnej [d]	36.4	20.2	35.1	30.6	40.2	10.2
Współczynnik równowagi [Bq d ⁻¹ /Bq kg ⁻¹]	1.8×10 ⁻³	63×10 ⁻³	10×10 ⁻³	330×10 ⁻³	340×10 ⁻³	5000×10 ⁻³

Tabela 4.3.5—1. Metabolizm cezu zwierząt hodowlanych (dla określonego produktu diety człowieka)

	Parametry metabolizmu zwierzęcia dla określonego produktu diety człowieka						
Przedział metabolizmu	Mleko	Mleko owiec	Mięso wołowe				
Masa ciała [kg]	500	45	500				
Masa tarczycy [g]	100	10	100				
Dzienny pobór jodu [µd ⁻¹]	500	30	500				
Zawartość jodu stabilnego w przedziale:							
Nieorganicznym [µg]:	890	53	890				
Tarczycowym [µg]:	70000	500	70000				
Organicznym [µg]:	6364	181	6364				
Szybkość wychwytu jodu z płuc lub z przewodu pokarmowego $\lambda_1 = [d^{-1}]$	192	192	192				
Szybkość wychwytu jodu stabilnego przez							
tarczycę z przedziału nieorganicznego:	350	10	350				
Szybkość wydzielania jodu z tarczycy:	0.005	0.02	0.005				
Szybkość wydalania jodu z przedziału	0.005	0.02	0.005				
organicznego do nieorganicznego λ_4 [d ⁻¹]	0.05	0.05	0.05				
Szybkość wydalania jodu z przedziału	0.5	0.05	0.5				
nieorganicznego do moczu $\lambda_5 [d^{-1}]$	0.5	0.05	0.5				
Szybkość wydalania jodu z przedziału	0.005	0.005	0.005				
organicznego do moczu λ_6 [d ⁻¹]	0.000	0.000					
Szybkość wydalania jodu do mleka [d ⁻¹]	0.025	0.5	0				
Parametry ekwiwalentnej funkcji retencji							
Współczynnik składowej szybkiej	99%	99%	99%				
Czas połowicznego zaniku składowej szybkiej [d]	0.68	0.72					
Czas połowicznego zaniku składowej wolnej [d]	17	20					
Współczynnik równowagi [Bq d ⁻¹ /Bq kg ⁻¹]	1.6×10 ⁻³	400×·10 ⁻³	2.9×10 ⁻³				

Tabela 4.3.5-2. Metabolizm jodu zwierząt hodowlanych (dla określonego produktu diety człowieka)

Rysunek 4.3.5—1*. Przykładowy schemat metabolizmu cezu dla krowy mlecznej. Strzałkami zaznaczono szybkość przechodzenia cezu do poszczególnych przedziałów metabolizmu. W tym przypadku przedziałem krytycznym jest MLEKO.

Rysunek 4.3.5—2. Przykładowy schemat metabolizmu jodu dla krowy mlecznej. Strzałkami zaznaczono szybkość przechodzenia jodu do poszczególnych przedziałów metabolizmu. W tym przypadku przedziałem krytycznym jest MLEKO.

* wygląd dialogu programu

4.3.6 Stężenie radionuklidu w narządach krytycznych człowieka Cz

Stężenie radionuklidu w narządach krytycznych człowieka obliczano według takiego samego algorytmu matematycznego jak stężenie w produktach zwierzęcych używając ogólnego 6- przedziałowego modelu metabolizmu radionuklidu. Model metabolizmu jodu w organizmie człowieka został szczegółowo omówiony w rozdziale 1.7, natomiast model metabolizmu cezu w rozdziale 2.6. Model metabolizmu cezu wykorzystuje tylko 4- przedziały ogólnego 6 – przedzialowego modelu metabolizmu. Rysunek 4.3.6—1 i Rysunek 4.3.6—2 przedstawiają drogi przechodzenia cezu i jodu między poszczególnymi przedziałami metabolizmu w organizmie człowieka. Zastosowany w modelu CLRP algorytm obliczeniowy metabolizmu tych radionuklidów wymaga znajomości szybkości ich przejść między poszczególnymi przedziałami metabolizmu. Parametry te nie są dobrze poznane dla różnych grup wiekowych i dlatego zastosowano obliczenia własne, dobierając prędkości przejść w taki sposób aby, algorytm dawał w wyniku dwuskładnikową funkcję wykładniczą, zgodną z parametrami rekomendowanymi w literaturze.

Parametry modelu metabolizmu cezu dla różnych grup wiekowych zastosowane do obliczeń w modelu CLRP przedstawia Tabela 4.3.6—1.

Do obliczeń wykorzystano dane statystyczne o spożyciu niektórych artykułów żywnościowych w Polsce na podstawie *[25]*. Dane o rocznym średnim spożyciu artykułów żywnościowych wykorzystane do obliczeń modelowych przedstawia Tabela 4.3.6—2. W tabeli podano również współczynniki retencji radionuklidu w poszczególnych artykułach żywnościowych w wyniku procesów przetwarzania. Na przykład: współczynnik 58% dla cezu w białym serze oznacza, że przy stężeniu 1Bq w 1 litrze mleka otrzymujemy w procesie przetwarzania mleka na ser 0.58 Bq w 1 kilogramie sera.

Dietę dzieci w wieku 1-15 lat ustalono na podstawie własnych przeliczeń diety dorosłych, biorąc pod uwagę zapotrzebowanie kaloryczne spożywanych pokarmów. Dane o spożyciu mleka wzięto na podstawie [48].

Grupa wiekowa	Dziecko	Dziecko	Dziecko	Dziecko	Dziecko	Vahiata	Mażarzyna
	1 rok	2 lata	5 lat	10 lat	15 lat	Kobieta	więzczyzna
Dzienny pobór cezu µd ⁻¹	0.5	1.0	2.9	5.7	7.1	8.6	10.0
Masa ciała [kg]	7	10	20	40	50	60	70
szybkość wydalania cezu z							
tkanek do płynów ustrojowych [d ⁻¹]	0.043	0.052	0.052	0.088	0.275	0.313	0.313
szybkość wydalania cezu z	0.022	0.021	0.020	0.026	0.045	0.020	0.020
tkanek [d ⁻¹]	0.022	0.031	0.030	0.036	0.045	0.039	0.039
Zawartość cezu stabilnego							
w przedziale:							
Całego ciała [µg]	11.5	18.5	11.5	302.1	831.7	1230.8	1431.2
Tkanek (mięśni) [µg]	5.8	10.9	5.8	124.3	130.5	145.1	176.7
Szybkość wydalania cezu z							
płynów ustrojowych do moczu [d ⁻¹]	0.027	0.027	0.017	0.0094	0.0028	0.0017	0.0017
Wydalanie moczu [L d ⁻¹]	2	2	2	2	3	4	4
Parametry ekwiwalentnej funkcji retencji							
Współczynnik składowej szybkiej		0.6	0.45	0.3	0.13	0.1	0.1
Czas połowicznego zaniku składowej szybkiej [d]		10	9.1	5.8	2.2	2	2
Czas połowicznego zaniku składowej wolnej [d]		17	30	50	93	110	110
Współczynnik równowagi [Bq Bq ⁻¹ d]	23.08	18.97	29.71	53.00	117.14	143.12	143.12

Tabela 4.3.6—1. Parametry metabolizmu cezu w organizmie człowieka zastosowane do obliczeń w modelu CLRP.

Nazwa przedziału ekosystemu skąd	Produkt	Liczba dni od wytworzenia produktu do	Współczyniki preparatyki kulinarnej [%]		Średnie roczne spożycie [kg/rok]				
pochodzi produkt surowy		jego konsumpcji	Cez	Jod	М	D 15	D 10	D 5	D 1
PSZENICA OZIMA	Pieczywo pszenne	5	30	50	73.00	52.74	46.72	29.20	14.60
ŻYTO	Pieczywo żytnie	5	20	50	73.00	62.05	46.72	29.20	14.60
SAŁATA GRUNTOWA	Sałata	1	60	60	0.73	0.62	0.47	0.29	0.00
SAŁATA SZKLARNIOWA	Sałata	1	70	60	0.73	0.62	0.47	0.29	0.00
KAPUSTA	Kapusta świeża	1	90	30	10.59	9.00	6.77	4.23	0.00
KAPUSTA	Kapusta kiszona	15	70	60	4.38	3.72	2.80	1.75	0.00
MARCHEW	Korzeniowe	1	70	60	32.85	27.92	21.02	13.14	6.57
POMIDORY	Pomidory świeże	0	70	70	10.22	8.69	6.54	4.09	2.04
OGÓRKI	Ogórki świeże	1	50	60	8.76	7.45	5.61	3.50	0.00
POMIDORY	Przetwory warzywne	1	70	60	7.30	6.21	4.67	2.92	1.46
FASOLA	Ziarno roślin strączkowych	1	33	33	1.46	1.24	0.93	0.58	0.29
ZIEMNIAKI WCZESNE	Ziemniaki wczesne	7	75	75	54.75	46.54	35.04	21.90	10.95
ZIEMNIAKI PÓŹNE	Ziemniaki późne	7	75	75	54.75	46.54	35.04	21.90	10.95
JABŁKA	Owoce drzew, krzewów	1	80	80	21.90	18.62	14.02	8.76	4.38
TRUSKAWKI	Owoce jagodowe	0	80	80	6.94	5.89	4.44	2.77	1.39
JABŁKA	Przetwory owocowe	2	70	70	2.56	2.17	1.64	1.02	0.51
MLEKO	Mleko i napoje mleczne (kefir)	0	100	100	109.50	160.60	175.20	178.85	211.70
MLEKO	Sery twarogowe (kwaśne)	1	58	167	6.94	5.89	4.44	2.77	1.39
MLEKO	Sery twarde i topione	30	88	250	2.56	2.17	1.64	1.02	1.46
MLEKO	Śmietana i śmietanka	5	65	125	7.30	6.21	4.67	2.92	1.17
WOŁOWINA	Mięso wołowe	2	87	90	5.84	4.96	3.74	2.34	0.00
WIEPRZOWINA	Mięso wieprzowe	2	86	90	13.51	11.48	8.64	5.40	0.00
CIELĘCINA	Cielęcina	3	89	90	0.73	0.62	0.47	0.29	0.15
WIEPRZOWINA	Przetwory mięsne	5	70	70	14.05	11.94	8.99	5.62	2.81
WOŁOWINA (WÓŁ)	Przetwory mięsne	10	70	80	14.05	11.94	8.99	5.62	2.81
DRÓB	Kury, koguty, kurczaki	1	90%	100%	10.95	9.31	7.01	4.38	2.19
JAJKA	Jaja kg bez skorupki)	3	100%	100%	9.49	8.07	6.07	3.80	1.90
SKAŻENIE POWIETRZA	Oddychanie [m ³]	0	100%	100%	8760	6570	5475	3650	1752

Tabela 4.3.6—2. Średnie roczne spożycie poszczególnych produktów w Polsce

M - człowiek standardowy; D 15, D 10, D 5, D 1 - dziecko 15,10, 5, 1 letnie

Rysunek 4.3.6—1[•]. Schemat metabolizmu jodu w organizmie człowieka standardowego

Rysunek 4.3.6—2*. Schemat metabolizmu cezu w organizmie człowieka standardowego.

[◆] strzałkami zaznaczono szybkość przechodzenia jodu do poszczególnych przedziałów metabolizmu - narządem krytycznym jest TARCZYCA, (wygląd dialogu programu).

^{*} strzałkami zaznaczono szybkość przechodzenia cezu o poszczególnych przedziałów metabolizmu - narządem krytycznym jest CAŁE CIAŁO, (wygląd dialogu programu).

4.3.7 Dawka zewnętrzna pochodząca od chmury radioaktywnej H_{chmura}

Dawka zewnętrzna pochodząca od chmury radioaktywnej wyrażona jest wzorem:

$$H_{chmura} = \left\{ \sum_{i=1}^{N} C_{powietrze}^{i} \right\} \times H^{0}_{chmura} \times \left(T_{wewn} \times \Phi^{wewn}_{zabudowa} + T_{zewn} \times \Phi^{zewn}_{zabudowa} \right)$$

gdzie:

$$\left\{\sum_{i=1}^{N} C_{p \, o \, w \, i e \, tr z \, e}^{i}\right\} - \text{scałkowane stężenie radionuklidu w powietrzu [Bq×d]}$$

(N -liczba dni trwania skażenia)

$$H^0_{chmura}$$
 - współczynnik konwersji dawka-zanurzenie w chmurze \mathbb{O} ,

- Twewn procent czasu (w ciągu doby) przebywania wewnątrz budynku
- T_{zewn} procent czasu (w ciągu doby) przebywania poza budynkiem
- $\Phi^{\text{wewn}}_{\text{zabudowa}}$ współczynnik osłabienia promieniowania wewnątrz budynku \mathbb{O} [135],[137],[138]
- $\Phi^{\text{zewn}}_{\text{zabudowa}}$ współczynnik osłabienia promieniowania od zabudowań zewnętrznych \Im [135],[137],[138]

4.3.8 Dawka zewnętrzna od powierzchni gruntu Hg

Dawka zewnętrzna od powierzchni gruntu przedstawiana jest zależnością:

$$H_{grunt}(T) = \left\{ \int_{0}^{T} D_{eff}(t) \cdot dt \right\} \times H_{grunt}^{0} \times \left(T_{wewn} \times \Gamma^{wewn}_{zabudowa} + T_{zewn} \times \Gamma^{zewn}_{zabudowa} \right)$$

gdzie:

D_{eff}(t) – efektywna depozycja [139]

-

Hgrunt(T) - dawka od gruntu 1m nad powierzchnią ziemi w określonym przedziale czasowym T

H⁰_{grunt} - współczynnik konwersji mocy dawki 1m nad powierzchnią ziemi na jednostkę opadu.

Ozależy od emitowanego promieniowania radionuklidu i od grupy wiekowej.

② zdefiniowany jako stosunek dawki promieniowania w powietrzu wewnątrz budynku do dawki od chmury na otwartej przestrzeni , zależy od typu zabudowań oraz od emitowanego promieniowania radionuklidu

③ zdefiniowany jako stosunek dawki promieniowania w powietrzu na zewnątrz zabudowań do dawki od chmury na otwartej przestrzeni, zależy od typu zabudowań oraz od energii emitowanego promieniowania

T_{wewn} - procent czasu (w ciągu doby)przebywania wewnątrz budynku

T_{zewn} = procent czasu (w ciągu doby)przebywania poza budynkiem

 $\Gamma^{\text{wewn}}_{\text{zabudowa}}$ - współczynnik osłabienia promieniowania od gruntu wewnątrz budynku (135],[137],[138].

Γ^{zewn}_{zabudowa} - współczynnik osłabienia promieniowania od gruntu przez zabudowania zewnętrzne (§ [135],[137],[[138]

Efektywna depozycja $D_{eff}(t)$

Efektywna depozycja D_{eff} (t) zmienia się wskutek migracji radionuklidu w głąb gleby i obliczana jest według przybliżonego wzoru Gale *[139]* :

$$D_{eff}(t_i) = \sum_{t_j=1}^{t_i} D(t_j) \times \left\langle \alpha \times \exp\left[-\lambda_1 \times (t_j - t_i)\right] + (1 - \alpha) \times \exp\left[-\lambda_2 \times (t_j - t_i)\right] \right\rangle$$

gdzie:

D(t_i) - dzienna depozycja (sucha i mokra) w dniu t_i

- α frakcja migracji szybkiej (dla ¹³⁷Cs = 0.63);
- 1-α frakcja migracji wolnej (dla 137 Cs = 0.37);
- λ_1 stała zaniku migracji szybkiej (dla 137Cs = 1.13 rok⁻¹ (T_{1/2} = 223,9 [d])
- λ_2 stała zaniku migracji wolnej (dla ¹³⁷Cs = 0.075 rok⁻¹ (T_{1/2} = 3373,3 [d])

④ zdefiniowany jako stosunek dawki promieniowania od gruntu wewnątrz budynku do dawki od gruntu na otwartej przestrzeni (1m nad ziemią), zależy od typu zabudowań oraz od energii emitowanego zależy od typu zabudowań oraz od emitowanego promieniowania radionuklidu

[©] zdefiniowany jako stosunek dawki promieniowania od gruntu na zewnątrz zabudowań do dawki od gruntu na otwartej przestrzeni (1 m nad ziemią), zależy od typu zabudowań oraz od energii emitowanego promieniowania

4.3.9 Dawka inhalacyjna od chmury H_{inh}.

Dawka inhalacyjna od chmury przedstawiona jest zależnością:

$$\mathbf{H}_{\text{inh}} = \left\{ \sum_{i=1}^{N} C_{powietrze}^{i} \right\} \times H^{0}_{inh} \times \left(T_{wewn} \times \Psi^{wewn}_{zabudowa} + T_{zewn} \times 1 \right) \cdot \mathbf{v}_{\text{inh}} \cdot \mathbf{H}^{0}_{inh}$$

gdzie:

$$\left\{\sum_{i=1}^{N} C_{powietrze}^{i}\right\} - \text{scałkowane stężenie w powietrzu (N liczba dni trwania skażenia)}$$

v_{inh} - prędkość oddychania

H⁰_{inh} - współczynnik konwersji dawka inhalacja

 T_{wewn} = procent czasu (w ciągu doby)przebywania wewnątrz budynku

T_{zewn} = procent czasu (w ciągu doby)przebywania poza budynkiem

Ψ^{wewn}_{zabudowa} = współczynnik filtracji wewnątrz budynku ①- [135],[137],[138]

4.3.10 Dawka od wchłonięć pokarmowych H_{pokarm}

Dawka od wchłonięć drogą pokarmową w określonym narządzie krytycznym (tarczyca, całe ciało) jest obliczana jako całka z zawartości radionuklidu w określonym przedziale czasowym mnożona przez współczynnik konwersji mocy dawki.

H_{pokarm} (T) = F
$$\cdot \int_{t=0}^{T} C_{\text{narzad krytyczny}}(t) dt$$

gdzie:

F - współczynnik konwersji mocy dawki w narządzie krytycznym przy jednostkowej zawartości radionuklidu w tym narządzie.

 $C_{narząd krytyczny}(t)$ - zawartość radionuklidu w narządzie krytycznym w czasie t

① zdefiniowany jako stosunek stężenia radionuklidu w powietrzu wewnątrz budynku do stężenia radionuklidu w powietrzu na otwartej przestrzeni (1m nad ziemią), zależy od typu zabudowań oraz od fizyko-chemicznych form występowania radionuklidu w powietrzu

Przy obliczeniach dawek obciążających (tzw. życiowych za okres 50 lat) w przypadku długo-życiowych radionuklidów na przykład ¹³⁷Cs ($T_{1/2}$ = 30 lat), przeprowadzenie obliczeń stężeń radionuklidu w poszczególnych komponentach środowiska za wyżej wymieniony okres wydłuża czas obliczeń i obciąża komputer olbrzymią liczbą danych. Dlatego też w przypadku krótkotrwałego uwolnienia przeprowadza się dokładne obliczenia za okres 2÷10 lat, a następnie wykonuje się ekstrapolację uwzględniając efektywny czas połowicznego zaniku radionuklidu w ekosystemie człowieka [173].

$$\int_{T_o}^{T_o+50/at} C_{\text{narzad krytyczny}}(t) dt = \int_{T_o}^{T_o+T_p} C_{\text{narad krytyczny}}(t) dt + \int_{T_o+T_p}^{T_o+50/at} C_{\text{narzad krytyczny}}(T_o+T_p) \cdot \Lambda_{enw}(\cdot t) dt$$

gdzie:

T_p - okres dokładnych przeliczeń modelowych

 Λ_{enw} = funkcja efektywnej szybkość zaniku radionuklidu w środowisku.

Do obliczeń przyjęto dwuskładnikową funkcję wykładniczą:

$$\Lambda_{enwCs-137}(t) = \alpha \exp\left[-\frac{\ln(2)}{T_{1/2}^{s}} \cdot t\right] + (1-\alpha) \exp\left[-\frac{\ln(2)}{T_{1/2}^{L}} \cdot t\right]$$

gdzie:

procentowy udział składowej szybkiej $\alpha = 68\%$,

okres połowicznego zaniku składowej szybkiej $T_{1/2}^{S} = 0.7$ lat

oraz okres połowicznego zaniku składowej wolnej $T_{1/2}^{L} = 15.4$ lat.

Tabela 4.3.10—1 przedstawia ważniejsze czynniki mające wpływ na redukcję dawki według *[135]* a Rysunek 4.3.10—1 pokazuje możliwe drogi ekspozycji człowieka oraz schemat obliczeń dawek ekspozycji wewnętrznej i zewnętrznej z uwzględnieniem parametrów redukujących dawkę. Tabela 4.3.10—2 przedstawia współczynniki przeliczeniowe dawek dla ¹³⁴Cs, ¹³⁷Cs, ¹³¹I, ¹³²I użyte w obliczeniach modelowych *[104]*, *[136]*, *[137]*, *[138]*.

	REDUKCJA DAWEK EKSPOZYCJI ZEWNĘTRZNEJ										
		EKSPOZ	YCJA OD CH	IMURY	EKSPOZYCJA OD GRUNTU						
Typ zabudowy	Czas przebywania wewnątrz budynku	Współczynn promien	ik osłabienia iowania	WSP.	Współczynn promien	WSP.					
	T _{wewn} [%]	Φ ^{zewn} zabudowa poza budynkiem	Φ ^{wewn} zabudowa w budynku	REDUKCJI	Γ ^{zewn} zabudowa poza budynkiem	∏ ^{wewn} zabudowa w budynku	REDUKCJI				
niska (typu wiejskiego)	0,6	1 0,3		0,580	1	0,1	0,460				
wysoka (typu miejskiego)	0,8	0,6	0,05	0,160	0,3	0,01	0,068				

Tabela 4.3.10—1.	Parametry	redukcji	dawek.

	REDUK	CJA DAWE	K EKSPOZY	CJI WEWN	IĘTRZNEJ
		EKSPOZY DROC	CJA OD WCH GĄ ODDECHO	ŁONIĘĆ WĄ	EKSPOZYCJA OD WCHŁONIĘĆ DROGĄ POKARMOWĄ
Typ zabudowy	Czas przebywania wewnątrz	Współczy	nnik filtracji		Zakaz wypasu zwierząt na pastwiskach
	budynku	buu	yiiku	WSP.	Przetwarzanie skażonej żywności
	T _{wewn} [%]	Ψ ^{zewn} zabudowa poza budynkiem	Ψ ^{wewn} zabudowa w budynku	REDUKCJI	Zakaz konsumpcji świeżego mleka i innych produktów spożywczych
niska (typu wiejskiego)	0,6	1	0,6	0,76	Blokada tarczycy jodem stabilnym (przy skażeniach promieniotwórczym
wysoka (typu miejskiego)	0,8	1	0, 3	0,44	jodem -redukuje dawkę od wchłonięć drogą oddechową i pokarmową)

Rysunek 4.3.10—1. Diagram ilustrujący możliwe drogi ekspozycji człowieka oraz schemat obliczeń dawek ekspozycji wewnętrznej i zewnętrznej z uwzględnieniem parametrów redukujące dawkę

	Efektywn	y równoważn	ik dawki od z	anurzenia w	chmurze [mSv	$v d^{-1} Bq^{-1} m^3$]	
IZOTOD	Dorosły	Dorosły	Dziecko	Dziecko	Dziecko	Dziecko	Dziecko
IZOTOP	(mężczyzna)	(kobieta)	15 lat	10 lat	5 lat	1 rok	3 miesiące
¹³⁴ Cs	6.240E-06	6.240E-06	6.240E-06	6.960E-06	6.960E-06	7.680E-06	7.680E-06
¹³⁷ Cs	2.232E-06	2.232E-06	2.232E-06	2.400E-06	2.400E-06	2.640E-06	2.640E-06
¹³¹ I	1.440E-06	1.440E-06	1.440E-06	1.608E-06	1.608E-06	1.824E-06	1.824E-06
¹³² I	8.880E-06	8.880E-06	8.880E-06	1.008E-05	1.008E-05	1.104E-05	1.104E-05
	Efektywr	ny równoważi	nik dawki od z	zanurzenia w	wodzie [mSv	$d^{-1}Bq^{-1}m^{3}$]	
	Dorosły	Dorosły	Dziecko	Dziecko	Dziecko	Dziecko	Dziecko
124	(mężczyzna)	(kobieta)	15 lat	10 lat	5 lat	1 rok	3 miesiące
¹³⁴ Cs	4.460E-13	4.460E-13	4.460E-13	4.803E-13	4.803E-13	1.196E-07	1.196E-07
¹³⁷ Cs	3.039E-05	3.039E-05	3.039E-05	3.273E-05	3.273E-05	4.389E-08	4.389E-08
¹³¹ I	3.150E-09	3.150E-09	3.150E-09	3.150E-09	3.150E-09	3.150E-09	3.150E-09
¹³² I	1.930E-08	1.930E-08	1.930E-08	1.930E-08	1.930E-08	1.930E-08	1.930E-08
Efe	ktywny równo	oważnik dawl	ki na wysokoś	ci 1 m od pov	wierzchni ziei	ni [mSv d ⁻¹ B	$q^{-1}m^2$]
	Dorosły	Dorosły	Dziecko	Dziecko	Dziecko	Dziecko	Dziecko
124	(mężczyzna)	(kobieta)	15 lat	10 lat	5 lat	1 rok	3 miesiące
¹³⁴ Cs	8.640E-08	8.640E-08	8.640E-08	9.600E-08	9.600E-08	1.152E-07	1.152E-07
¹³⁷ Cs	3.170E-08	3.170E-08	3.170E-08	3.360E-08	3.414E-08	4.320E-08	4.320E-08
¹³¹ I	2.136E-08	2.136E-08	2.136E-08	2.352E-08	2.352E-08	2.880E-08	2.880E-08
¹³² I	1.224E-07	1.224E-07	1.224E-07	1.368E-07	1.368E-07	1.632E-07	1.632E-07
	Efektywn	y równoważn	ik dawki od v	vchłonięć dro	gą oddechow	ą [mSv Bq ⁻¹]	
	Dorosły	Dorosły	Dziecko	Dziecko	Dziecko	Dziecko	Dziecko
	(mężczyzna)	(kobieta)	15 lat	10 lat	5 lat	1 rok	3 miesiące
^{134}Cs	1.300E-05	1.200E-05	1.100E-05	7.800E-06	7.500E-06	7.300E-06	7.300E-06
¹³⁷ Cs	8.600E-06	8.600E-06	8.600E-06	6.100E-06	5.900E-06	6.400E-06	6.400E-06
¹³¹ I	7.400E-06	7.400E-06	1.100E-05	1.900E-05	3.700E-05	7.200E-05	7.200E-05
¹³² I	9.400E-08	9.400E-08	1.300E-07	2.200E-07	4.500E-07	9.600E-07	1.100E-06
	Efektywn	y równoważn	ik dawki od w	vchłonięć dro	gą pokarmow	ą [mSv Bq ⁻¹]	
	Dorosły	Dorosły	Dziecko	Dziecko	Dziecko	Dziecko	Dziecko
- 101	(mężczyzna)	(kobieta)	15 lat	10 lat	5 lat	1 rok	3 miesiące
¹³⁴ Cs	2.00E-05	2.00E-05	2.000E-05	1.50E-05	1.30E-05	1.60E-05	1.600E-05
¹³⁷ Cs	1.30E-05	1.30E-05	1.300E-05	1.00E-05	9.60E-06	1.20E-05	1.200E-05
¹³¹ I	2.200E-05	2.200E-05	3.400E-05	5.200E-05	1.000E-04	1.800E-04	1.800E-04
¹³² I	2.900E-07	2.900E-07	4.100E-07	6.200E-07	1.300E-06	2.400E-06	3.000E-06
Moc	dawki przy je	dnostkowej a	ktywności rad	dionuklidu w	organie kryty	cznym [mSv	$Bq^{-1}d^{-1}$]
	Dorosły	Dorosły	Dziecko	Dziecko	Dziecko	Dziecko	Dziecko
124	(mężczyzna)	(kobieta)	15 lat	10 lat	5 lat	1 rok	3 miesiące
¹³⁴ Cs	1.54E-07	1.54E-07	1.539E-07	2.83E-07	4.48E-07	6.96E-07	6.957E-07
¹³⁷ Cs	1.00E-07	1.00E-07	1.111E-07	1.89E-07	3.23E-07	5.22E-07	5.217E-07
¹³¹ I	1.420E-04	1.700E-04	2.380E-04	3.590E-04	6.270E-04	1.290E-03	1.630E-03
¹³² I	3.920E-04	4.700E-04	6.460E-04	9.650E-04	1.660E-03	3.380E-03	4.270E-03

Tabela 4.3.10—2. Współczynniki przeliczeniowe dawek dla poszczególnych grup wiekowych.

5 WERYFIKACJA MODELU.

5.1. ZASADY WERYFIKACJI

W kolejnych rozdziałach tej części pracy zostały przedstawione i omówione wyniki porównania przewidywań modelu z danymi pomiarowymi oraz przedyskutowane parametry modelu mające wpływ na dokładność przewidywań. Przewidywania modelu były sprawdzane dla poszczególnych komponentów środowiska, zaczynając od skażenia gruntu, stężenia w trawie, w mleku i jego produktach, kończąc na ostatnim weryfikowalnym punkcie jakim jest stężenie radionuklidu w organie krytycznym.

Przy opracowywaniu danych pomiarowych zastosowano procedurę zalecaną przez MAEA dla zbioru danych pomiarowych charakteryzujących się rozkładem logarytmiczno-normalnym o dużej dyspersji wynikającej z błędów pomiarowych, niespójności w ustaleniu okresu pomiarowego, różnej metodyki standardów pobierania próbek oraz małej liczby pomiarów w określonym okresie pomiarowym, będących tylko przypadkową próbą z populacji pomiarów [4], [9]. W tym wypadku wartość średnią i kres górny i dolny 95% przedziału ufności średniej ustala się według wzoru:

$$\overline{O}_a = \exp(\mu + \frac{\sigma^2}{2})$$

$$\overline{O}_{95\%U} = \overline{O}_a \exp\left(+1.645\sqrt{\left(\frac{\sigma}{n}^2 + \frac{\sigma^4}{2(n-1)}\right)}\right)$$

$$\overline{O}_{95\%L} = \overline{O}_a \exp\left(-1.645\sqrt{\left(\frac{\sigma}{n}^2 + \frac{\sigma^4}{2(n-1)}\right)}\right)$$

gdzie:

Ō_a – średnia wyników pomiarowych

 $\bar{O}_{95\%U-}$ kres górny 95% przedziału ufności średniej

 $\bar{O}_{95\%L-}$ kres dolny kres 95% przedziału ufności średniej

μ- średnia logarytmów zbioru danych

 σ^2 - wariancja średniej logarytmów zbioru danych

W początkowym okresie paru miesięcy po uwolnieniu radionuklidów do środowiska, zmieniająca się szybko w czasie dynamika skażeń wymaga zastosowania średnich dziennych pomiarów, w późniejszym okresie, ze względu na ustalającą się równowagę w ekosystemie do porównań przewidywań modelu z danymi pomiarowymi wystarczają średnie miesięczne i roczne.

Jako kryterium określające wiarygodność przewidywań zastosowano wskaźnik niezawodności RI *(reliability index)* [141] definiowany jako:

$$RI = \exp\left(\sqrt{\left[\frac{1}{n}\sum_{i=1}^{n}\left(\ln O_{i} - \ln P_{i}\right)^{2}\right]}\right)$$

gdzie:

O1,, O2,, On - zbiór danych pomiarowych

P1, P2,,Pn – odpowiadający mu zbiór wartości przewidywanych

Przy całkowitej zgodności przewidywań z wartościami pomiarowymi wskaźnik RI przyjmuje wartość 1. Dla wartości RI większych od 1 interpretacja RI jest następująca:

przy założeniu, że rozkład wartości pomiarowych dla każdej wartości przewidywanej jest logarytmiczno-normalny oraz że wartości przewidywane przez model reprezentują średnie z rozkładem logarytmiczno-normalnym - 68% odpowiednich danych pomiarowych mieści się w zakresie RI, czyli w zakresie od RI×P do 1/RI×P, gdzie P jest wartością przewidywaną przez model.

Dodatkowym kryterium zastosowanym przy ocenie zgodności przewidywań modelu z wartościami pomiarowymi jest współczynnik korelacji między wartościami logarytmów wartości przewidywanych ln(Pi) i obserwowanych ln(Oi) przy założeniu zależności liniowej według wzoru:

$$\ln(P_i) = \alpha \ln(O_i) + b_{\perp}$$

gdzie:

O1,, O2,, On - zbiór danych pomiarowych

 $P_1, P_2, ..., P_n$ – odpowiadający mu zbiór wartości przewidywanych

Współczynnik korelacji \mathbb{R}^2 bliski jedności świadczy o dobrej zależności monotonicznej między danymi przewidywanymi i obserwowanymi *[141]*. W przypadku porównywania przewidywań modelu z obserwacjami przedstawianymi jako serie czasowe (np. średnie dzienne stężenia w mleku w zadanym okresie), współczynnik nachylenia α bliski jedności świadczy o zgodności stałych zaniku porównywanych serii.

W dalszych rozdziałach pracy, wartości przewidywane i odpowiadające im średnie pomiarów zostały przedstawione na rysunkach w zależności od czasu, w którym baza pomiarów jest wystarczająca do przeprowadzenie porównań.

Zastosowano następujący schemat graficzny do prezentacji danych:

przewidywane wartości średnie - linia czarna-ciągła,

kres górny 95% przedziału ufności wartości przewidywanych - linia czerwona ciągła,

kres dolny 95% przedziału ufności – linia niebieska ciągła,

średnie pomiarów (dzienne, miesięczne) - koła szare,

kres górny 95% przedziału ufności średniej pomiarów – pionowa linia z czerwonym znacznikiem

kres dolny 95% przedziału ufności – pionowa linia z niebieskim znacznikiem.

W tabelach przedstawiono średnie wartości przewidywanych (dzienne, miesięczne oraz roczne), 95% przedział ufności wartości przewidywanych, średnie pomiarów (dzienne, miesięczne oraz roczne), 95% przedział ufności średniej, współczynniki P/O (stosunek wartości przewidywanej do wartości pomiarowej (obserwowanej) w danym czasie porównawczym, wskaźnik wiarygodności przewidywań modelu RI oraz parametry regresji liniowej logarytmów ln(Pi) i ln(Oi).

Przy omówieniu wyników pomiarów w dalszych rozdziałach pracy zastosowano uproszczony zapis 95% przedziału ufności średniej (przewidywanej lub pomiarów) jako (a×P,1/a×P) który oznacza, że tzw. nieznana wartość prawdziwa zawiera się w tym przedziale, czyli jest większa od 1/a×P oraz mniejsza od a×P, gdzie P oznacza wartość przewidywaną. W niektórych przypadkach statystyka pomiarów stężeń radionuklidu w danym komponencie środowiska była zbyt uboga, aby średnie pomiarów oraz odpowiadający im zakres 95% przedziału ufności można by było uznać za reprezentatywne dla badanego obszaru. W tym przypadku weryfikacja parametrów modelu dla tego komponentu środowiska jest możliwa jeżeli otrzymano dobrą zgodność wartości przewidywanych przez model w następnym komponencie

(zależnym od poprzedniego) przy założeniu poprawności doboru parametrów przedziału zależnego.

Ustalony przez MAEA standard oceny wiarygodności modelu zakłada, że model nie powinien przecenić wartości prawdziwej więcej niż o czynnik 3, co oznacza, że przewidziana przez model deterministyczny wartość nie powinna być trzykrotnie większa oraz trzykrotnie mniejsza w stosunku do średniej wartości pomiarowych. Dodatkowo, zalecany standard zaleca, aby wartości przewidywane przez model nie były większe niż kres górny 95% przedziału ufności wartości średniej pomiarów oraz nie mniejsze niż kres dolny 95% przedziału ufności średniej pomiarów [4].

5.2. WERYFIKACJA MODELU CLRP W RAMACH MIĘDZYNARODOWEGO PROGRAMU VAMP (prognozowanie narażenia od ¹³⁷Cs)

5.2.1 Zadania programu VAMP

Zgodnie z zaleceniami międzynarodowymi [1], wiarygodność przewidywań kodu CLRP była testowana w ramach programu badawczego VAMP (Validation of Environmental Model Predictions) w latach 1989-1995, koordynowanego przez Międzynarodową Agencję Energii Atomowej, stworzonego w celu testowania zdolności prognozowania modeli komputerowych stosowanych dla oceny ryzyka radiologicznego [9].

Program ten obejmował dwa główne zadania:

- Przeprowadzenie, weryfikacji wartości przewidywanych przez modele komputerowe z wartościami pomiarowymi (na bazie danych pomiarowych po awarii w Czarnobylu) w postaci tzw. "ślepych scenariuszy".
- Poprawienie prognoz modeli poprzez wykorzystanie i stymulację badań zachowania się radionuklidów w środowisku.

W ramach VAMP działały cztery grupy robocze zajmujące się różnymi aspektami badań zachowania się radionuklidów w środowisku człowieka:

I. Grupa zajmująca się środowiskiem lądowym (Terrestrial Environment)

II. Grupa zajmująca się środowiskiem miejskim (Urban Environment)

III. Grupa zajmująca się środowiskiem wodnym (Aquatic Environment)

IV. Grupa do oceny dawek dla wielokrotnych dróg ekspozycji (Multiply Pathway Assessement)

W trzech pierwszych grupach praca skupiała się na zagadnieniach obejmujących zadanie 2, czyli weryfikacje parametrów opisujących przejścia radionuklidów między piętrami wybranych ekosystemów (Rysunek 5.2.1—1).

W wyniku pracy grup ekspertów powstała baza danych parametrów opisujących transport radionuklidów środowisku [21] oraz dokonana została kompleksowa analiza zjawisk związanych z osadzaniem się radionuklidów na różnych powierzchniach: gruncie, roślinach oraz elementach środowiska miejskiego [22].

Autor niniejszej pracy, stosując model CLRP brał udział w pracach grupy IV. W programie tym uczestniczyło 17 modeli z 14 krajów.

Prace w grupie IV zostały podzielone na trzy etapy:

- Zebranie i analiza danych pomiarowych w celu wybrania regionu geograficznego i opracowanie scenariusza skażeń tego regionu (region ten pozostawał nieznany dla uczestników biorących udział w modelowaniu)
- 2. Przeprowadzenie obliczeń modelowych (generacja wartości przewidywanych przez model)
- 3. Analiza wyników:
 - a. określenie przyczyn niezgodności przewidywań modelu z wynikami pomiarowymi
 - b. określenie błędu statystycznego wartości przewidywanych przez model.

Rysunek 5.2.1—2 przedstawia procedurę testowania modeli środowiska przez uczestników programu VAMP.

W latach 1990-1994 przeprowadzono testowanie modeli na bazie dwóch scenariuszy:

- 1) senariusz CB (Centralna Bohemia Praga i okolice); badanie skażenie ¹³⁷Cs
- 2) scenariusz S (południowa część Finlandii); badanie skażenie ¹³⁷Cs.

Rysunek 5.2.1—1 . Diagram obrazujący procedurę weryfikacji parametrów opisujących przejścia radionuklidów między poszczególnymi piętrami ekosystemu (powietrze, depozycja, rośliny, zwierzęta)- testowania modelu w ramach VAMP

Rysunek 5.2.1—2 . Diagram obrazujący procedurę testowania kodu komputerowego modelu w ramach VAMP

5.2.2 Ocena prawidłowości prognozowania za pomocą modelu CLRP

Różnice między scenariuszami wynikały z odmienności regionów i odmiennej sytuacji radiologicznej. W przypadku scenariusza CB geneza chmury radioaktywnej i rozkład postaci aerozolowej ¹³⁷Cs był podobny jak w Polsce. Rozkład ten charakteryzował się średnią rozkładu aerozoli $E(D_{ae})$ równą 0.5µm oraz odchyleniem standardowym średniej $SD(D_{ae}) = 3$ µm, co dawało prędkość depozycji aerozolu $1 \div 2 \times 10^{-3}$ m s⁻¹. W przypadku Scenariusza S , chmura radioaktywna pochodząca z wcześniejszego uwolnienia charakteryzowała się aerozolem o większej średnicy (prędkość osadzania aerozolu $1 \div 2 \times 10^{-2}$ m s⁻¹), co w efekcie dało 4 razy większą depozycję pomimo pięciokrotnie niższego stężenia w powietrzu. Również różny czas wegetacji roślin i związane z nim praktyki rolnicze, tzn. terminy siewu i zbioru roślin, miały istotny wpływ na dawkę od wchłonięć drogą pokarmową. W przypadku regionu S, czas rozpoczęcia wegetacji roślin jest typowy dla krajów południowej Skandynawii i przesunięty blisko o miesiąc w stosunku do regionu CB, a sam okres wegetacji jest skrócony (co jest

rekompensowane tzw. "długim dniem" w miesiącach letnich). Dawało to w efekcie mniejsze skażenie roślin w regionie w porównaniu z CB, pomimo czterokrotnie większej depozycji w S. Natomiast istotnym czynnikiem zwiększającym dawkę od wchłonięć pokarmowych w regionie S było charakterystyczne dla tej populacji spożywanie znaczących ilości produktów pochodzących ze środowiska wodnego (ryby słodkowodne) oraz leśnego (jagody, grzyby).

W przypadku obu scenariuszy przewidywania modelu odnośnie poszczególnych komponentów środowiska lądowego oraz zawartości ¹³⁷Cs w całym ciele mieściły się w zakresie nie większym niż (2×P, 1/2×P). Wyniki porównania wartości przewidywanych z wartościami pomiarowymi przedstawia Tabela 5.2.2—1. Większe różnice występowały przy przewidywaniach skażeń tzw. naturalnych składników ekosystemu (jagód, grzybów oraz dziczyzny) około (5×P;1/5×P). Wynikało to z faktu dość skąpej bazy parametrów opisujących te składowe . Kod CLRP spełniał wymagane warunki odnośnie przewidywań poziomów stężeń i dawek od ¹³⁷Cs. Przewidywane przez model wartości dawek mieściły się w zakresie mniejszym niż (3×P; 1/3×P) w stosunku do dawek określanych przez niezależnych ekspertów (autorów scenariusza).

Podsumowanie wyników obu scenariuszy zamieszcza Tabela 5.2.2-2.

Szczegółowe omówienie wyników przedstawiono w pracach [142], [143].

Badania programu VAMP pokazały, że w przypadku regionów o zupełnie różnej charakterystyce klimatycznej i wynikającym z tego zmianom w sposobie upraw i produkcji rolnej, używany do przewidywania dawek model wymaga zasadniczych zmian parametrów wejściowych, a nawet zmian struktury oraz formuł (przykładowo; dla Scenariusza S konieczny był pakiet umożliwiający ocenę skażeń w środowisku leśnym i wodnym ze względu na udział produktów pochodzących z tych środowisk w diecie fińskiej).

W przypadku regionów o podobnej strukturze agrarnej (Czechy i Polska) oraz zbliżonej charakterystyce skażeń powietrza, przewidywane wartości dawki skutecznej od ¹³⁷Cs są zbliżone (dla Polski 455 μ Sv ,dla Czech 460 μ Sv)[•].

^{• 350} µSv ocenione przez autorów Scenariusza

Komponent środowiska	Psze (ja	enica ra)	Ży	/to	Jęcz	mień	Ml	eko	Wołc	owina	Wiepr	zowina	WE	BC ³	Grzyby	Czarne jagody
Scenariusz:	CB [®]	S [©]	CB	S	CB	S	CB	S	CB	S	CB	S	CB	S	S	S
				Wska	źnik n	iezwoo	lności	RI ((re	eliabil	ity ind	ex)					
		1.4		1.4		1.6	1.9	1.4	1.8	1.7	2.4	2.1	1.4	1.3	1.2	1.2
				Stosun	iek wa	rtości j	przewi	dywar	nej do :	mierzo	onej					
	P/O	P/O	P/O	P/O	P/O	P/O	P/O	P/O	P/O	P/O	P/O	P/O	P/O	P/O	P/O	P/O
maj 86							1.3	0.3		0.1			1.0			
czerwiec 86							0.5	1.5	0.3	0.9	0.9	0.1	2.2	1.5		
lipiec 86							0.4	0.9	0.8	0.7	1.2	0.8	1.8			
sierpień 86							0.6	1.0	2.2	0.8	0.6	1.0	1.6			
wrzesień 86							0.7	1.4	2.4	0.9	0.7	1.0	1.5			
IV-Q 1986	0.7	1.2	0.6	1.0		1.3	0.8	1.4	1.3	1.2	0.6	1.8	1.2	1.1	1.4	1.0
I-Q 1987							0.8	1.4	1.8	1.3	0.6	1.4	1.3			
II-Q 1987							0.6	1.2	1.1	1.4	0.5	1.6	1.5	1.3		
III-Q 1987							0.7	0.9	0.5	1.2	0.5	1.3	1.4			
IV-Q 1987	2.4	0.9	1.6	1.0		1.4	0.9	1.0	0.7	1.0	0.4	0.9	1.0	1.2	1.2	1.0
I-Q 1988							0.3	1.0	0.7	1.0	0.4	0.9	1.1			
II-Q 1988			1		1		0.5	1.0	0.5	0.9	0.1	0.9	1.0	1.3		1
III-Q 1988			1		1		3.0	1.0	0.6	0.9	0.4	0.7	1.0]		1
IV-Q 1988		0.7		0.6		1.1	1.7	1.0	1.0	1.0	0.8	0.7	0.9	1.3	0.9	1.1
I-Q 1989			1		1		0.6	1.0	0.6	0.8	0.5	0.6	1.0]		1
II-Q 1989								1.0		1.0		0.6		1.2		
III-Q 1989								1.1		1.0		0.6			0.8	1.2
IV-Q 1989		0.9		1.7		0.4		1.1		1.1		0.4		1.3		
I-Q 1990	Ì							1.3		1.1		0.4				
II-Q 1990								1.3		1.3		0.4		1.5		
III-Q 1990	Ì		İ		İ			1.2	İ	1.3		0.4	İ	İ		
IV-Q 1990		1.8		1.4				1.2		1.2		0.3		1.4	1.0	1.3

Tabela 5.2.2—1. Wielkości dla porównania z danymi pomiarowymi, Scenariusz CB, Scenariusz S

[®] CB-Czechy

[©] S- Finlandia

[®] WBC – pomiary zawartości ¹³⁷Cs licznikiem całego ciała

Tabela 5.2.2-2. Porównanie wyników Scenariuszy VAMP z przewidywaniami CLRP

Różnice między scenariuszami:

- 1) Scałkowane po czasie stężenia ¹³⁷Cs w powietrzu 5x wyższe w CB
- 2) "Grubszy" rozkład aerozoli w powietrzu dla S -> 4 x wyższa depozycja
- 3) Przesunięcie o miesiąc wegetacji roślin w S -> mniejsze skażenie
- 4) Środki zapobiegawcze w S do końca maja
- 5) Różnice w diecie zwierząt hodowlanych
- 6) Duży udział ryb w diecie pokarmowej w S
- 7) Środowisko leśne w S

Składowa dawki	Scenariusz CB	Scenariusz S
Scałkowane stężenie w powietrzu [Bq h m ⁻³]	550	100
Depozycja określona na podstawie pomiarów	5,6	19,9
[kBqm ⁻²]	5,5	20,0 (13,8-6,1)
CLRP		
Całkowita życiowa (50 lat) [mSv]		
Obliczona przez autorów scenariusza	0,34	1,3 (0.6 - 2.5)
CLRP	0,46 (0,31-0,59)	0,49 (0,35-0,67)
Pokarmowa [mSv]		
Obliczona przez autorów scenariusza	0,16	0,5 + 0.3 ryby
CLRP	0,20 (0,15-0,25)	0,31 (0,2 - 0,4)
Inhalacja [mSv]		
Obliczona przez autorów scenariusza	0,0052	0,00027
CLRP	0,006 (0,003 - 0,009)	0,00033 (0,0002-
		0,0005)
Od gruntu [mSv]		
Obliczona przez autorów scenariusza	0,18	0,67 (0.35-1.1) [®]
CLRP	0,25 (0,16-0,33)	0,18 (0,12-0,23)

[®] Różnica wynika z pesymizowanych wartości współczynników osłonności budynków i czasu przebywania na zewnątrz budynku przyjętych do obliczeń przez autorów scenariusza.

5.3. WERYFIKACJA MODELU NA BAZIE WYNIKÓW BIOMOVS (¹³⁷Cs, ¹³¹I)

Program BIOMOVS II (BIOSPHERIC MODEL VALIDATION STUDY, PHASE II)[®] był międzynarodowym programem zajmującym się różnymi aspektami modelowania w środowisku [144].

Jednym z zadań tego programu było ustalenie głównych przyczyn rozbieżności między przewidywaniami modeli środowiska, wynikającymi z subiektywnej interpretacji danych scenariusza i znajomości kodu przez osobę prowadzącą obliczenia. Program stwarzał też możliwość weryfikacji własnego modelu na bazie ślepego scenariusza [145]:

W programie brały udział trzy komputerowe modele środowiska:

- CHERPACK- Chalk River Research Pathways Analisis Code (Rinh Peterson, S. Chouhan Chalc River Nuclear Laboratories)
- CLRP -Concentration Levels Rapid Predictions
 (Paweł Krajewski, Centralne Laboratorium Ochrony Radiologicznej)
- 3. RUINS

(Neil Court, Notthingam University)

W/w kody spełniały szereg wymagań umożliwiających korzystanie z kodu wielu użytkownikom i były sprawdzane w innych testach międzynarodowych. Kody te dawały możliwości przeprowadzenia obliczeń zmiany stężeń izotopów cezu i jodu w czasie dla w różnych komponentów środowiska na drodze transportu radionuklidu: powietrze ->depozycja-> pasza-> mleko. Posiadały wyczerpującą instrukcję obsługi kodu, umożliwiającej używanie go przez osobę nie znającą kodu.

[®] Instytucjami prowadzącumi ten program były: The Atomic Energy Control Board of Canada Atomic Energy of Canada Limited Centro de Investigaciones Energéticas Medióambientales y Tecnologicas, Spain Emperesa Nacional de Residuos Radioactivos S.A., Spain Swedish Radiation Protection Instytute Uczestnicy mieli za zadanie przeprowadzić obliczenia dla następujących ślepych scenariuszy.

1. SCENARIUSZ BREMEN (Czarnobyl).

Na podstawie zmierzonych stężeń ¹³⁷Cs i ¹³¹I w powietrzu i danych meteorologicznych w okresie od 29-kwietnia-1986 do 6-maja-1986 określić :

- a) całkowitą depozycję dla 137 Cs oraz 131 I (Bq/m²)
- b) Stężenie ¹³¹I w trawie w okresie od 5-maja do 15 czerwca 1986 oraz stężenie ¹³⁷Cs w trawie w okresie od 5 maja 27 czerwca 1986 (Bq/kg św. masy).
- c) Stężenie ¹³¹I i w mleku w okresie od 14 maja do 15 czerwca 1986 oraz stężenie ¹³⁷Cs w mleku w okresie od 14 maja do 27 czerwca 1986 (Bq/L).

2. SCENARIUSZ FORT COLLINS (Testy nuklearne)

Na podstawie zmierzonych stężeń ¹³⁷Cs w powietrzu w okresie kwiecień -sierpień 1963 oraz kwiecień -sierpień 1965 oraz pomiarów depozycji określić:

- a) średnie stężenie miesięczne (maj, czerwiec, lipiec, sierpień) ¹³⁷Cs w trawie, lucernie (Bq/kg suchej masy) oraz w mleku (Bq/L).
- b) scałkowane stężenia w w/w komponentach za okres od 1 maja do 31sierpnia w roku 1963 i 1965.

5.3.1 Ocena prawidłowości prognozowania za pomocą modelu CLRP

Scenariusz Bremen

Geneza chmury radioaktywnej i rozkład postaci aerozolowej ¹³¹I i ¹³⁷Cs były podobne jak w Polsce w okresie 29-30 kwietnia 1986 r. Scałkowane stężenie w powietrzu określone na bazie pomiarów wynosiło 6.6 Bq m³ d dla ¹³¹I oraz 2.8 Bq m³ d dla ¹³⁷Cs.

Scenariusz nie dawał żadnych wskazówek odnośnie procentowego udziału poszczególnych postaci ¹³¹I jak również rozkładu frakcji aerozolowej. W obliczeniach depozycji i skażenia gruntu ¹³¹I przyjęto rozkład frakcji aerozolowej według pomiarów przeprowadzonych w Monachium-Neuherberg *[161]*. Średnia rozkładu aerozoli $E(D_{ae})$ wynosiła 0.5 µm z Odchyleniem Standardowym SD(D_{ae}) 5 µm. Przyjęty rozkład dawał prędkość depozycji 6.5×10⁻³ m/s dla frakcji aerozolowej. Wartość ta była zgodne z zakresem prędkości osadzania aerozolu na trawie, podawaną w badaniach prowadzonych w czasie awarii w Czarnobylu 1÷2×10⁻³ m/s

dla większych prędkości wiatru rzędu 5m/s [22]. Udział poszczególnych postaci fizykochemicznych jodu (aerozolowej, elementarnej i organicznej) przyjęto na podstawie pomiarów prowadzonych w Polsce [150]. Wynosił on 45% frakcji aerozolowej, 35% frakcji elementarnej oraz 25% frakcji organicznej.

Prędkość opadania frakcji jodu elementarnego przyjęto jako równą 1×10^{-2} m/s oraz jodu związanego organicznie CH₃J równą 5.0×10^{-4} m/s *[22]*. Na podstawie przyjętych założeń otrzymano średni opad całkowity ¹³¹I równy 4.5 kBq/m² z 95% zakresem ufności od 2.2 kBq/m² do 9.1 kBq/m². Obliczenia modelowe wskazywały, że w przypadku wystąpienia opadu około 2 mm można się spodziewać dodatkowego skażenia gruntu około 1.5 kBq/m² (współczynnik wymywania, tzw. washout ratio wynosił 5×10^{4} [m³_{powietrze}/m³_{deszcz}]. Dane zawarte w scenariuszu nie dawały podstaw do uwzględniania większych opadów deszczy w tym okresie. Zmierzone wartości depozycji (9 próbek z modelowanego obszaru) ¹³¹I były pięciokrotnie wyższe niż wartości przewidywane (Tabela 5.3.1—3). Przewidywane stężenie ¹³¹I w trawie zgadza się z wynikami pomiarowymi (P/O = 0.79). Dotyczy to rownież przewidywanego stężenia ¹³¹I w mleku (P/O=0.96) (Tabela 5.3.1—3). Wytłumaczeniem rozbieżności między przewidywaniami modelu a pomiarami depozycji może być nie reprezentatywność punktów poboru próbek dla miejsc wypasu krów.

Przewidywane i mierzone średnie dzienne wartości stężenia ¹³¹I w mleku okresie 15 maja 1986 ÷ 9 czerwca 1986 przedstawia (Tabela 5.3.1—1) oraz (Rysunek 5.3.1—1). Wartości te otrzymano na podstawie wyliczonego stężenia ¹³¹I w trawie przy założeniu dziennej diety krów wynoszącej 45 kg św. masy trawy.

Przyjęty ekwiwalent funkcji retencji jodu dla mleka wynosił:

współczynnik równowagi:3.5×10-3 [d L-1]udział składowej szybkiej:99%okres połowicznego zaniku składowej szybkiej:0.68 dniokres połowicznego zaniku składowej wolnej:17 dni

Przyjęty współczynnik równowagi był zgodny z wartością podawaną w literaturze: średnia 3.4×10^{-3} d L⁻¹ z zakresem $0.8 \div 8 \times 10^{-3}$ d⁻¹ *[37]*. Przy jego zastosowaniu wartości przewidywane zbliżone były do wartości pomiarowych. Wartości pomiarowe obrazują pomiary przeprowadzone w okolicy Bremen *[145]*. Wskaźnik niezawodności RI wynosi 1.22 co oznacza, że około 68% wyników pomiarów zawiera się w zakresie wartości przewidywanych P (1.2×P; 1/1.2×P). Współczynnik korelacji transformacji log-normalnej wartości przewidywanych i wartości pomiarowych wynosi 0.95, natomiast współczynnik liniowy logarytmów wynosi 0.96, wskazując, że okres połowicznego zaniku wartości pomiarowych jest zgodny z okresem

połowicznego zaniku wartości przewidywanych. Dla pomiarów z Bremen wynosił on 5.3 dnia z 95% przedziałem ufności równym 5.2÷5.6 dni.

Kres górny i dolny 95% przedział ufności przewidywań modelu obejmujący większość danych pomiarowych zawiera się w granicach (2.3×P, 1/2.3×P).

Przyjęty rozkład frakcji aerozolowej i podane w scenariuszu warunki meteorologiczne dawały trzykrotnie mniejszą wartość depozycji ¹³⁷Cs w stosunku do wartości pomiarowych. Przewidywana wartość wynosiła 1,7 kBq/m² z 95% przedziałem ufności ($0.7 \text{ kBq/m}^2 \div 4.4 \text{ kBq/m}^2$) (Tabela 5.3.1—3). Rozbieżność przewidywań modelu z wynikami pomiarów depozycji ¹³⁷Cs nie potwierdza się dla przewidywanych stężeń ¹³⁷Cs w trawie, które zgadzają się z wynikami pomiarowymi (P/O = 0.92), to samo dotyczy przewidywanego stężenia ¹³⁷Cs w mleku (P/O=0.94) Tabela 5.3.1—3.

Przewidywane średnie dzienne i mierzone wartości stężenia ¹³⁷Cs w mleku okresie 15 maja 1986 ÷ 25 czerwca 1986 przedstawia Tabela 5.3.1—2 i Rysunek 5.3.1—2. Do obliczeń modelowych przyjęto 40% rozpuszczalnego cezu w opadzie, daje to ekwiwalent funkcji retencji cezu dla mleka:

współczynnik równowagi:	5.5×10-3 [dL ⁻¹]
udział składowej szybkiej:	68%
okres połowicznego zaniku składowej szybkiej:	2.3 dni
okres połowicznego zaniku składowej wolnej:	36.4 dni

Przyjęty współczynnik równowagi zgadzał się z wartościami podawanych w literaturze: średnia 5.4×10-3 $[dL^{-1}]$ z zakresem (1.3÷8.8)×10-3 $[dL^{-1}]$ /36], /37]. Wartości pomiarowe obrazują pomiary przeprowadzone w okolicy Bremen. Wskaźnik niezawodności RI wynosi 1.48 co oznacza, że około 68% wyników pomiarów zawiera się w zakresie wartości przewidywanych P 1/1.48×P). Współczynnik korelacji transformacji (1.48×P. log-normalnej wartości przewidywanych i wartości pomiarowych wynosi 0.65, natomiast współczynnik liniowy logarytmów wynosi 0.72, wskazując, że okres połowicznego zaniku wartości pomiarowych jest krótszy w stosunku do okresem połowicznego zaniku wartości przewidywanych. Dla pomiarów z Bremen wynosił on 17 dni z 95% przedziałem ufności równym 14÷22 dni, dla wartości przewidywanych wynosił on 22 dni z 95% przedziałem ufności równym 16÷33 dni.

Kres górny i dolny 95% przedziału ufności przewidywań modelu obejmujący większość danych pomiarowych zawiera się w granicach (2.6×P, 1/2.6×P).

Przewidywania kodu CLRP dla Scenariusza Bremen potwierdziły prawidłowość przewidywań modelu dla drogi depozycja->pasza->mleko dla izotopow ¹³¹I i ¹³⁷Cs w wypadku uwolnień tych radionuklidów do środowiska z elektrowni jądrowych. Przeprowadzona weryfikacja uzasadniła potrzebę znajomości warunków meteorologicznych zwłaszcza opadów deszczu, oraz udziału różnych postaci fizykochemicznych jodu jak również rozkładu widma aerozolu dla poprawnych przewidywań opadu radioaktywnego.

Zgodnie z celem programu BIOMOVS II, zastosowano drugi model komputerowy CHERPAK do obliczeń Scenariusza Bremen [145]. Miało to na celu sprawdzenie wpływu znajomości kodu na dokładność przewidywań. Zastosowano te same parametry początkowe opisujące poszczególne piętra ekosystemu. Porównanie przewidywanej depozycji oraz scałkowanych steżeń 131 i 137Cs w trawie i mleku dla Scenariusza BREMEN przy użyciu kodu CLRP i CHERPACK przedstawia Tabela 5.3.1—3. Zastosowanie kodu CHERPAC dało (podobnie jak przy obliczeniach CLRP) kilkukrotnie niższą depozycję przewidywaną w stosunku do wartości obserwowanej. Otrzymano około trzykrotnie większe scałkowane stężenia ¹³¹I w trawie i mleku oraz odpowiednio około dwukrotnie wyższe scałkowane stężenia ¹³⁷Cs. Zakres 95% przedziału ufności przewidywań wynikający z założonego zakresu niepewności parametrów początkowych był rzędu $(3 \times P, 1/3P)$ dla trawy i $(4 \times P, 1/4 \times P)$ dla mleka podobnie dla ¹³¹I oraz ¹³⁷Cs. Kres dolny tego zakresu pokrywał wartości pomiarowe dla trawy i mleka, ale przy rozpiętości jednego rzędu zakresu wartości przewidywanych. Przeprowadzony test pozwala na wyciągniecie wniosku, że bez dobrej znajomości komputerowego modelu środowiska, uprzednio sprawdzonego w różnych wariantach uwolnień, należy się liczyć z niepewnością oceny skażeń środowiska co najmniej o rząd wielkości nawet przy prawidłowym doborze parametrów początkowych.

Tabela 5.3.1—1.	Scenariusz Bremen	- stężenie	¹³¹ I w	mleku	krów –	wartości	przewidywar	ne i
pomiarowe								

	wart	ości przewid [Bq L ⁻¹]	ywane	wartości	
Data	średnie dzienne	95% przedz śred	ialu ufności niej	pomiarowe [Bq L ⁻¹]	P/O
		Kres dolny	Kres górny		
15-maj-86	2.72E+01	1.22E+01	6.06E+01	2.00E+01	1.36
16-maj-86	2.93E+01	1.32E+01	6.53E+01	4.00E+01	0.73
17-maj-86	2.68E+01	1.21E+01	5.96E+01	2.10E+01	1.28
18-maj-86	2.36E+01	1.06E+01	5.25E+01	2.80E+01	0.84
19-maj-86	2.06E+01	9.27E+00	4.60E+01	2.40E+01	0.86
20-maj-86	1.80E+01	8.08E+00	4.01E+01	2.20E+01	0.82
21-maj-86	1.58E+01	7.09E+00	3.51E+01	1.20E+01	1.31
22-maj-86	1.38E+01	6.19E+00	3.07E+01	1.10E+01	1.25
23-maj-86	1.21E+01	5.42E+00	2.68E+01	1.30E+01	0.93
24-maj-86	1.05E+01	4.74E+00	2.34E+01	1.10E+01	0.96
25-maj-86	9.21E+00	4.13E+00	2.05E+01	1.20E+01	0.77
26-maj-86	8.05E+00	3.61E+00	1.79E+01		
27-maj-86	7.04E+00	3.16E+00	1.57E+01	6.00E+00	1.17
28-maj-86	6.16E+00	2.77E+00	1.37E+01	5.00E+00	1.23
29-maj-86	5.39E+00	2.42E+00	1.20E+01	5.00E+00	1.08
30-maj-86	4.70E+00	2.11E+00	1.04E+01		
31-maj-86	4.10E+00	1.84E+00	9.13E+00	4.00E+00	1.02
01-cze-86	3.59E+00	1.61E+00	7.99E+00	3.50E+00	1.03
02-cze-86	3.15E+00	1.41E+00	7.00E+00		
03-cze-86	2.76E+00	1.24E+00	6.13E+00	2.80E+00	0.98
04-cze-86	2.42E+00	1.09E+00	5.38E+00		
05-cze-86	2.12E+00	9.51E-01	4.71E+00		
06-cze-86	1.86E+00	8.37E-01	4.13E+00	1.50E+00	1.24
07-cze-86	1.62E+00	7.28E-01	3.62E+00		
08-cze-86	1.43E+00	6.41E-01	3.18E+00		
09-cze-86	1.25E+00	5.63E-01	2.79E+00	1.80E+00	0.70
Wskaź	nik niezaw	odności RI za	a okres 15 ma	uj – 9 czerwiec 1	986
		wyno	sił 1.22,		
	Wspó	lczynnik kor	elacji log-nor	rm 0.95,	
	Współczy	nniki prostej	Ln(P)=0.96*	[*] ln(O)+0.08	

Rysunek 5.3.1—1 . Porównanie przewidywanych przez model wartości stężenia ¹³¹ I w mleku z wartościami pomiarowymi

	wart	ości przewidy [Bq L ⁻¹]	ywane		
okres	Średnie dzienne	95% przedz śred	ialu ufności niej	wartości pomiarowe [Bq L ⁻¹]	P/O
		Kres dolny	Kres górny		
15-maj-86	1.15E+01	5.31E+00	2.50E+01	2.70E+01	0.43
16-maj-86	1.95E+01	9.00E+00	4.22E+01	4.30E+01	0.45
17-maj-86	2.49E+01	1.15E+01	5.40E+01	4.30E+01	0.58
18-maj-86	2.85E+01	1.31E+01	6.16E+01	5.00E+01	0.57
19-maj-86	3.06E+01	1.41E+01	6.64E+01	5.00E+01	0.61
20-maj-86	3.18E+01	1.47E+01	6.89E+01	4.30E+01	0.74
23-maj-86	3.20E+01	1.47E+01	6.93E+01	5.00E+01	0.64
24-maj-86	3.14E+01	1.45E+01	6.80E+01	5.90E+01	0.53
25-maj-86	3.07E+01	1.41E+01	6.64E+01	3.50E+01	0.88
26-maj-86	2.98E+01	1.37E+01	6.46E+01	2.10E+01	1.42
27-maj-86	2.89E+01	1.33E+01	6.26E+01	4.20E+01	0.69
28-maj-86	2.79E+01	1.29E+01	6.06E+01	3.50E+01	0.80
29-maj-86	2.70E+01	1.24E+01	5.85E+01	3.20E+01	0.84
30-maj-86	2.60E+01	1.20E+01	5.63E+01	3.00E+01	0.87
31-maj-86	2.50E+01	1.15E+01	5.41E+01	2.80E+01	0.89
01-cze-86	2.40E+01	1.11E+01	5.21E+01	2.80E+01	0.86
02-cze-86	2.31E+01	1.07E+01	5.02E+01	1.80E+01	1.29
03-cze-86	2.23E+01	1.03E+01	4.83E+01	2.10E+01	1.06
04-cze-86	2.14E+01	9.88E+00	4.64E+01	2.10E+01	1.02
05-cze-86	2.06E+01	9.50E+00	4.47E+01	2.80E+01	0.74
08-cze-86	1.84E+01	8.47E+00	3.98E+01	2.90E+01	0.63
12-cze-86	1.58E+01	7.28E+00	3.41E+01	2.00E+01	0.79
14-cze-86	1.46E+01	6.74E+00	3.17E+01	2.00E+01	0.73
17-cze-86	1.31E+01	6.03E+00	2.83E+01	1.10E+01	1.19
19-cze-86	1.22E+01	5.61E+00	2.63E+01	9.00E+00	1.35
22-cze-86	6.79E+00	3.14E+00	1.47E+01	1.00E+01	0.68
25-cze-86	4.56E+00	2.10E+00	9.87E+00	9.00E+00	0.51
Wskaźnik ni	ezawodnoś	ci RI za okre	s 14 maj – 27	7 czerwiec 1986 wy	nosił 1.48,
	Wst	oólczynnik ko	orelacii log-n	orm 0.65,	, ,
	Współc	zynniki prost	ej Ln(P)=0.7	2*ln(O)+0.62	

Tabela 5.3.1—2. Scenariusz Bremen - stężenie ¹³⁷Cs w mleku krów – wartości przewidywane i pomiarowe

Rysunek 5.3.1—2. Porównanie przewidywanych przez model wartości stężenia ¹³⁷ Cs w mleku z wartościami pomiarowymi

		CLRP				CHERPA	СК		OBSERWOWANE			
Depozycja ¹³¹ I [Bq/m ²]	bzycja ¹³¹ I Średnia 95% przedziału ufności średniej		P/O	Średnia	95% przedziału ufności średniej		P/O	Średnia	95% przedzi średr	ału ufności niej		
		Kres dolny	Kres górny			Kres dolny	Kres górny			Kres dolny	Kres górny	
Sucha	4.07E+03				4.89E+03	2.31E+03	8.26E+03					
Mokra	3.70E+02				1.40E+02	8.00E+01	2.10E+02					
Całkowita	4.45E+03			0.18	5.03E+03	2.39E+03	8.47E+03	0.2	2.5E+04	8.0E+03	5.0E+04	
Stężenie ¹³¹ I w trawie ^{0} [Bq kg ⁻¹ d św.m]	7.17E+03	2.86E+03	1.37E+04	0.79	2.48E+04	1.06E+04	5.01E+04	2.8	9.0E+03	8.0E+03	1.0E+04	
Stężenie ¹³¹ I w mleku [©] [Bq L ⁻¹ d]	2.60E+02	1.20E+02	5.95E+02	0.96	7.88E+02	2.07E+02	1.78E+03	2.9	2.7E+02	2.5E+02	3.0E+02	
		CLRP				CHERPA	СК	0	BSERWOWA	NE		
Depozycja ¹³⁷ Cs	Średnia	95% przedzi średi	ału ufności niej	P/O	Średnia	95% przedz śred	iału ufności niej	P/O	Średnia	95% przedzi średr	ału ufności niej	
		Kres dolny	Kres górny			Kres dolny	Kres górny			Kres dolny	Kres górny	
Sucha	1.46E+03				8.22E+02	3.50E+02	1.54E+03					
Mokra	2.09E+02				9.26E+01	3.97E+01	1.72E+02					
Całkowita	1.66E+03			0.34	9.15E+02	3.90E+02	1.71E+03	0.2	5.0E+03	2.0E+03	8.0E+03	
Stężenie ¹³⁷ Cs w trawie ³ [Bq kg ⁻¹ d św.m]	5.51E+03	2.52E+03	3 1.21E+04	0.92	1.39E+04	4.50E+03	2.90E+04	2.3	6.0E+03	5.0E+03	7.0E+03	
Stężenie ¹³⁷ Cs w mleku [@] [Bq L ⁻¹ d]	8.49E+02	3.92E+02	2 1.84E+03	0.94	1.43E+03	3.79E+02	3.47E+03	1.6	9.0E+02	8.0E+02	1.0E+03	

Tabela 5.3.1—3. Scenariusz BREMEN - porównanie wyników CLRP i CHERPACK

① Scałkowane stężenie w okresie 5 maja-15 czerwca 1986 r.

 \oslash Scałkowane stężenie w okresie 15 maja-15 czerwca 1986 r.

3 Scałkowane stężenie w okresie 5 maja-27 czerwca 1986 r.

④ Scałkowane stężenie w okresie 15 maja-27 czerwca 1986 r.

Scenariusz Fort Collins

Scenariusz ten dotyczył testu modeli w przypadku długotrwałego skażenia powietrza ¹³⁷Cs w wyniku opadu tego izotopu promieniotwórczego z troposfery.

Źródłem takich skażeń środowiska były próbne wybuchy jądrowe w atmosferze w latach 1962-1967. Największe uwolnienia nastąpiły w 1963 r. Pomiary skażeń trawy i mleka ¹³⁷Cs były prowadzone przez Colorado State University w latach 1962-1967 w okolicach Fort Collins [145]. Porównanie wartości przewidywanych przez model CLRP z wartościami pomiarowymi w 1963 roku przedstawia Tabela 5.3.1—4 oraz w 1965 roku Tabela 5.3.1—5. Średnie miesięczne mierzonej depozycji suchej i mokrej w latach 1963 i 1965 zostały podane w scenariuszu jako dane wejściowe. Depozycja ¹³⁷Cs była mierzona przez dwa różne typy urzadzeń pomiarowych: HASL funnel collector (0.072 m²) i Fiber Glasses Large funnel collector (1.41 m²) [145]. Wyniki pomiarowe depozycji różniły się blisko trzykrotnie w zależności od typu urządzenia: całkowita depozycia ¹³⁷Cs w 1963 roku mierzona przez HASL wynosiła 510 Bg m⁻² a mierzona przez Large Funnel wynosiła 200 Bq m⁻². Depozycja ¹³⁷Cs w 1965 roku wynosiła odpowiednio: HASL - 265 Bg m⁻², Large Funnel - 84 Bg m⁻². Stwarzało to duże trudności w ocenie wiarygodności wejściowych danych pomiarowych i wprowadzało subiektywny czynnik interpretacji scenariusza. Jako wejściowe dane depozycji dziennej ¹³⁷Cs przyjęto średnie miesięcznych odczytów depozycji z obu urządzeń, podzielone przez liczbę dni w danym miesiącu. Przewidywane przez model średnie miesięczne stężenia ¹³⁷Cs w trawie oraz scałkowane stężenia w trawie za okres 1963 i 1965 roku, są około dwukrotnie mniejsze w porównaniu z wartościami pomiarowymi (Tabela 5.3.1-4, Tabela 5.3.1-5). Kres górny 95% przedziału ufności wartości przewidywanych pokrywa zakres wartości pomiarowych. Niższe wartości przewidywane w trawie spowodowały również mniejsze niż obserwowane przewidywane stężenia 137 Cs w mleku w 1963 r. (P/O = 0.3). Dodatkowym czynnikiem obniżającym przewidywania był niższy współczynnik przejścia z trawy do mleka wynoszący 2×10⁻³ d L⁻¹, który jest bardziej adekwatny dla krótkotrwałych skażeń (np. po Czarnobylskich i nie uwzględnia efektu zwiększonej biodostępności cezu w trawie przechodzącego z gleby systemem korzeniowym. Efekt ten uwidocznił się jeszcze wyraźniej w przewidywaniach za rok 1965, gdzie przy stosunku wartości przewidywanej w trawie do obserwowanej równej 0.63, otrzymano pięciokrotnie niższe wartości przewidywane stężeń ¹³⁷Cs w mleku w stosunku do obserwowanych (P/O równy 0.2). Cez z okresu podwyższonego opadu w 1963 roku przechodził z ziemi do trawy i charakteryzował się większą biodostępnością w porównaniu z cezem pochodzącym z dwukrotnie mniejszego opadu w 1965 r. Nasuwającym się wnioskiem z testowania modelu CLRP na bazie Scenariusza Fort Collins było szczególne zwrócenie uwagi na zmiany współczynnika przejścia cezu z paszy do mleka w przypadku rozciągniętego w czasie skażenia cezem promieniotwórczym.

	Opad p	prom	ieniotwórczy	v (depozycja ca	iłko	owita w okr	esie 1963 rol	ku)		
	CLRP w	artoś [Bq	ści wejściow m ⁻²]	2		wartości pomiarowe [Bq m ⁻²]				
Średnia		95%	% przedział u	fności średniej		HASAL o	collector	Large Funnel		
366		Kr	es dolny 150	Kres górny 460	_	51	0	200		
				Trawa						
Okres	CL	RP ([Bo	wartości prze q kg ⁻¹ suchej	widywane masy]		wa: [Bq	rtości pomiar kg ⁻¹ suchej r	rowe nasy] ział ufności	P/O	
	Średni	ia	śr	edniej		Średnia	śrec	lniej		
		72.0	Kres dolny	Kres gorny	1	150	Kres doiny	Kres gorny	0.40	
maj 63	/	/3.8	53.9	101.	1	150	100	200	0.49	
czerwiec 63	10	12.2	/6.6	143.8		180	120	240	0.58	
lipiec 63	4	$\frac{13.2}{10.1}$	31.5	59.2		110	/3	14/	0.39	
Sterpten 63	3	<u>9.1</u>	28.5	55.5		80	53	107	0.49	
za okres 1963	79	974	5820	1092	5	15860	10573	21147	0.50	
				Mleko						
	CL	LRP	wartości prze [Bq L ⁻¹]	ewidywane		wa	owe	7.10		
Okres	Średni	ia	95% prze śr	dział ufności edniej		Średnia	95% przed śrec	ział ufności Iniej	P/O	
			Kres dolny	Kres górny			Kres dolny	Kres górny		
maj 63	0).93	0.68	1.2	7	2.5	1.7	3.3	0.37	
czerwiec 63	1	1.79	1.30	2.4	5	6	4.0	8.0	0.30	
lipiec 63	1	1.61	1.18	2.2	1	4	2.7	5.3	0.40	
sierpień 63	1	1.35	0.98	1.8	4	5	3.3	6.7	0.27	
Scałkowane za okres 1963		173	126	23	7	536	357	715	0.32	

Tabela 5.3.1—4. Scenariusz Fort Collins- wartości przewidywane i pomiarowe w 1963 roku.

	Opad pror	nieniotwórcz	y (depozycja całł	kowita w okr	esie 1965 rol	ku)						
	CLRP warto [Bo	ości wejściow 1 m ⁻²]	wartości pomiarowe [Bq m ⁻²]									
Średnia	95	% przedział u	fności średniej	HASAL	collector	Large Funnel						
155		res dolny 80	Kres górny 320	265		84						
Trawa												
Okres	CLRF [I	wartości prz 3q kg ⁻¹ suchej 95% prze śr	ewidywane masy] edział ufności redniej	wa [Bq Średnia	rtości pomiarowe kg ⁻¹ suchej masy] 95% przedział ufności średniej		P/O					
	Sicana	Kres dolny	Kres górnv	Sicuna	Kres dolny	Kres górny						
maj 65	23.6	11.2	49.7	50.0	40.0	70.0	0.47					
czerwiec 65	34.1	16.1	72	40.0	32.0	56.0	0.85					
lipiec 65	18.4	8.7	38.8	35.0	28.0	49.0	0.85					
sierpień 65	7.5	3.5	15.7	8.0	6.4	11.2	0.93					
Scałkowane za okres 1965	2550	1205	5374	4038	3230	5653	0.63					
			Mleko									
Okres	CLRF	CLRP wartości przewidywane [Bq L ⁻¹]			wartości pomiarowe [Bq L ⁻¹]							
	á 1 ·	95% prz	95% przedział ufności		95% przedział ufności		r/U					
	Srednia	Sredniej		Srednia	Sree Vaca dalawa	iniej Vraz zórraz						
mai 65	0.28			3 50	2 80		0.1					
czerwiec 65	0.28	0.12	$\frac{0.39}{1.23}$	2.80	2.80	3.92	0.1					
liniec 65	0.50	0.20	1.25	2.50	2.24	3.52	0.2					
sierpień 65	0.36	0.17	0.75	0.60	0.48	0.84	0.6					
Scałkowane za okres 1965	55	26	117	285	228	400	0.2					

Tabela 5.3.1—5. Scenariusz Fort Collins- wartości przewidywane i pomiarowe w 1965 roku.

5.3.2 Wnioski BIOMOVS II

Podsumowanie wyników przewidywań przeprowadzonych przy zastosowaniu trzech kodów przez 10 użytkowników w większości specjalistów z 10 letnim doświadczeniem w modelowaniu przedstawia Tabela 5.3.2—1. W tabeli przedstawiono stosunek wartości przewidywanej przez 10 uczestników programu (oznaczonych literami A÷J) do obserwowanej (P/O) dla poszczególnych przedziałów ekosystemu dla Scenariusza Bremen ¹³⁷Cs. Na podstawie przeprowadzonych testów BIOMOVS II sformułowano następujące główne wnioski *[145], [146]:*

- Wybór parametrów modelu charakteryzujących poszczególne przedziały środowiska i opisujących transport radionuklidów jest często subiektywnym wyborem użytkownika modelu (przeprowadzającego przewidywania) i wprowadza dodatkowy czynnik niepewności przewidywań.
- Przekonanie użytkownika kodu o dobrej znajomości scenariusza oraz o sprawności w posługiwaniu się kodem niekoniecznie gwarantuje większą zgodność przewidywań kodu z wynikami pomiarów.
- Zbieżność przewidywań z wynikami pomiarów może być przypadkowa w wyniku kompensacji błędów polegających na przeszacowaniu przez model wartości przewidywanych w jednym przedziale ekosystemu a nie oszacowaniu wartości w następnym przedziale ekosystemu.
- 4. Ograniczenie efektu subiektywnej oceny użytkownika kodu scenariusza może zapewnić zespół prowadzący ocenę narażenia. W szczególnych przypadkach awarii zaleca się stworzenie kilku grup ekspertów stosujących różne komputerowe modele środowiska. Końcowe wyniki przewidywań powinny powstawać na zasadzie uzgodnienia między grupami ekspertów po uprzedniej dyskusji i wyjaśnieniu różnic indywidualnych wyników.
- 5. Generowany przez kod zakres przedziału ufności przewidywanych wartości średnich, który to zakres powstaje w oparciu o zdefiniowane przez użytkownika modelu rozkłady statystyczne parametrów wejściowych modelu, często nie odzwierciedla wszystkich rzeczywistych źródeł niepewności przewidywań modelu.

Uczestnik	Opad całkowity			Stężenie ¹³⁷ Cs w trawie			Stężenie ¹³⁷ Cs w mleku		
	CHERPAC	RUINS	CLRP	CHERPAC	RUINS	CLRP	CHERPAC	RUINS	CLRP
А	0.32	0.34	0.33	5.69	0.29	0.52	14.56	0.42	0.68
В	0.16	0.44	-	0.42	3.27	-	0.48	0.93	-
С	0.05	0.003	-	0.12	0.18	-	0.40	0.93	-
D	0.17	0.18	0.31	0.34	0.15	0.12	0.39	0.13	0.87
Е	0.29	0.35	-	2.3	0.49	-	11.85	2.15	-
F	0.52	0.16	0.43	2.22	0.53	0.21	1.52	1.64	0.12
G	0.33	0.35	-	4.32	2.48	-	5.58	0.90	-
Н	0.20	0.23	-	1.27	0.61	-	1.15	0.82	-
Ι	0.24	-	-	0.84	-	-	2.01	-	-
J	0.36	-	0.33	3.82	-	1.14	1.66	-	0.34

Tabela 5.3.2—1. Porównanie wyników modeli i uczestnikow BIOMOVS II (Scenariusz Bremen ¹³⁷Cs)

5.4. WERYFIKACJA MODELU NA PODSTAWIE POMIARÓW ¹³¹I W POLSCE

Sprawdzono i zmodyfikowano parametry modelu opisujące transport jodu w kolejnych przedziałach ekosystemu. Porównano wartości przewidywane przez model z wartościami zmierzonymi dla poszczególnych przedziałów ekosystemu, w celu wyeliminowania tzw. błędów kompensacyjnych polegających na tym, że przeszacowanie wartości w jednym przedziale jest kompensowane przez model zaniżeniem wartości w drugim przedziale, co może dawać w wyniku prawidłowe przewidywania (zgodne z pomiarami) dla aktywności radionuklidu w przedziale końcowym (narządzie krytycznym człowieka),

Przy opracowaniu danych pomiarowych stężenia ¹³¹I w poszczególnych komponentach środowiska oparto się na następujących zbiorach danych: zbiór danych opracowanych w CLOR dla Międzynarodowej Agencji Energii Atomowej *[147]* liczący około 1140 pomiarów różnych komponentów środowiska, zbiór danych pomiarów aktywności ¹³¹I w tarczycy przeprowadzonych w CLOR okresie od 4.05.86 do 27.06.86 dla około 1400 osób z różnych rejonów Polski w tym około 800 osób z Warszawy *[150]* oraz zbiór danych 757 pomiarów aktywności ¹³¹I tarczycy przeprowadzonych przez Instytut Energii Atomowej ("Świerk") dla dorosłych w okresie 29.04.1986 ÷ 28.05.1986 *[152]*.

Zastosowanie w Polsce na masową skalę blokady tarczycy u dzieci i młodzieży jodem stabilnym, stwarzało możliwość wykorzystania modelu CLRP do oceny stopnia redukcji dawek [2], [155], 156].

5.4.1 Porównanie pomiarów stężenia w powietrzu

Model CLRP, podobnie jak inne modele środowiskowe• [27], [158], korzysta z wartości pomiarowych skażeń powietrza. Dane pomiarów stężenia ¹³¹I w powietrzu stanowiły punkt początkowy dalszych obliczeń modelu i jego weryfikacji z pomiarami w kolejnych komponentach środowiska takich jak: opad, skażenie powierzchni gruntu, skażenie roślinności i mleka. Uzupełnieniem tych danych były informacje o warunkach atmosferycznych panujących nad obszarem Polski (Tabela 5.5.1—1 oraz Tabela 5.4.1—2) [151].

Jako wyjściowy punkt obliczeń przyjęto średnie dzienne stężenia ¹³¹I w powietrzu obliczone na podstawie pomiarów chwilowych stężeń wykonywanych w Centralnym Laboratorium Ochrony

[•] Istnieją modele przewidujące przemieszczanie się skażeń od punktu uwolnienia do obszarów zdefiniowanych współrzędnymi geograficznymi wykorzystujące algorytmy obliczeniowe dyspersji atmosferycznej.

Radiologicznej w okresie od 28.04.86 do 30.05.86, w Zakładzie Dozymetrii Zakład II *[148]* i w Zakładzie Dozymetrii Indywidualnej VI *[150]*. W analizie uwzględniono różny czas poboru próbek powietrza, występowanie różnych postaci jodu w powietrzu, jak również wpływ innych izotopów szczególnie ¹³²I i ¹³²Te na dokładność pomiarów spektrometrycznych ¹³¹I . Procentowy udział różnych postaci fizykochemicznych jodu : jodu związanego z aerozolem; jodu elementarnego (molekularno gazowy I₂) oraz jodu organicznego CH₃I, był mierzony w Zakładzie VI przy użyciu głowicy typu "May-pack" w układzie trzech filtrów :

- 1. jod związany z aerozolem filtr Petrianowa FFP15
- jod molekularno-gazowy I₂ filtr włóknisty z węglem aktywowanym (Schleicher&Schüll 508)
- jod organiczny CH₃I- filtr włóknisty z węglem aktywowanym (Schleicher&Schüll 508 impregnowany 10% TEDA)

Prędkość przepływu powietrza wynosiła około 3 m³/godz., sprawność filtracji około 99.5% dla wszystkich postaci jodu *[149]*. W Zakładzie II mierzono tylko frakcję aerozolową jodu używając filtru Petrianow FEP15 o powierzchni 1 m² przy prędkości przepływu powietrza 300 m³/godz. Porównanie pomiarów obu Zakładów przedstawia Rysunek 5.4.1—1. Na rysunku przedstawiono frakcję aerozolowa ¹³¹I mierzoną przez Zakład-II (niebieska linia), aerozolową ¹³¹I mierzoną przez Zakład VI (czerwona linia) oraz frakcję jodu elementarnego (molekularno-gazowego) mierzoną również przez Zakład VI (zielona linia). Przebieg krzywych na wykresie pokazuje, że niezależnie od różnych okresów chwilowych pomiarów w obu Zakładach, zarejestrowano zbliżoną dynamikę skażeń powietrza, różnice w mierzonych wartościach chwilowych stężeń aerozolowej frakcji ¹³¹I w Zakładzie II, "uśredniane są " w dłuższych okresach pomiarowych Zakładu VI. Jako reprezentatywne dane skażeń powietrza ¹³¹I przyjęto średnie dzienne obliczone z chwilowych pomiarów stężeń ¹³¹I w powietrzu mierzonych w obu Zakładach:

Średnie dzienne stężenie ¹³¹I w powietrzu obliczono według algorytmu:

$$\overline{C}_{p}(d_{i}) = \sum_{k=1}^{k=n} C_{1} \cdot h_{1} + \frac{C_{1} + C_{2}}{2} \cdot (h_{2} - h_{1}) + \dots + C_{k} \cdot h_{k} + \frac{C_{k} + C_{k+1}}{2} \cdot (h_{k+1} - h_{k}) + C_{k+1} \cdot h_{k+1} \dots + C_{k} \cdot h_{k} + \frac{C_{k} + C_{k+1}}{2} \cdot (h_{k+1} - h_{k}) + C_{k+1} \cdot h_{k+1} \dots + C_{k} \cdot h_{k} + \frac{C_{k} + C_{k+1}}{2} \cdot (h_{k+1} - h_{k}) + C_{k+1} \cdot h_{k+1} \dots + C_{k} \cdot h_{k} + \frac{C_{k} + C_{k+1}}{2} \cdot (h_{k+1} - h_{k}) + C_{k+1} \cdot h_{k+1} \dots + C_{k} \cdot h_{k} + \frac{C_{k} + C_{k+1}}{2} \cdot (h_{k+1} - h_{k}) + C_{k+1} \cdot h_{k+1} \dots + C_{k} \cdot h_{k} + \frac{C_{k} + C_{k+1}}{2} \cdot (h_{k+1} - h_{k}) + C_{k+1} \cdot h_{k+1} \dots + C_{k} \cdot h_{k} + \frac{C_{k} + C_{k+1}}{2} \cdot (h_{k+1} - h_{k}) + C_{k+1} \cdot h_{k+1} \dots + C_{k} \cdot h_{k} + \frac{C_{k} + C_{k+1}}{2} \cdot (h_{k+1} - h_{k}) + C_{k+1} \cdot h_{k+1} \dots + C_{k} \cdot h_{k} + \frac{C_{k} + C_{k+1}}{2} \cdot (h_{k+1} - h_{k}) + C_{k+1} \cdot h_{k+1} \dots + C_{k} \cdot h_{k} + \frac{C_{k} + C_{k+1}}{2} \cdot (h_{k+1} - h_{k}) + C_{k+1} \cdot h_{k+1} \dots + C_{k} \cdot h_{k} + \frac{C_{k} + C_{k+1}}{2} \cdot (h_{k+1} - h_{k}) + C_{k+1} \cdot h_{k+1} \dots + C_{k} \cdot h_{k} + \frac{C_{k} + C_{k+1}}{2} \cdot (h_{k+1} - h_{k}) + C_{k+1} \cdot h_{k+1} \dots + C_{k} \cdot h_{k} + \frac{C_{k} + C_{k}}{2} \cdot (h_{k+1} - h_{k}) + C_{k+1} \cdot h_{k+1} \dots + C_{k} \cdot h_{k} + \frac{C_{k} + C_{k}}{2} \cdot (h_{k} - h_{k}) + C_{k} \cdot h_{k} + \frac{C_{k} + C_{k}}{2} \cdot (h_{k} - h_{k}) + C_{k} \cdot h_{k} + \frac{C_{k} + C_{k}}{2} \cdot (h_{k} - h_{k}) + C_{k} \cdot h_{k} + \frac{C_{k} + C_{k}}{2} \cdot (h_{k} - h_{k}) + C_{k} \cdot h_{k} + \frac{C_{k} + C_{k}}{2} \cdot (h_{k} - h_{k}) + C_{k} \cdot h_{k} + \frac{C_{k} + C_{k}}{2} \cdot (h_{k} - h_{k}) + C_{k} \cdot h_{k} + \frac{C_{k} + C_{k}}{2} \cdot (h_{k} - h_{k}) + C_{k} \cdot h_{k} + \frac{C_{k} + C_{k}}{2} \cdot (h_{k} - h_{k}) + C_{k} \cdot h_{k} + \frac{C_{k} + C_{k}}{2} \cdot (h_{k} - h_{k}) + C_{k} \cdot h_{k} + \frac{C_{k} + C_{k}}{2} \cdot (h_{k} - h_{k}) + C_{k} \cdot h_{k} + \frac{C_{k} + C_{k}}{2} \cdot (h_{k} - h_{k}) + C_{k} \cdot h_{k} + \frac{C_{k} + C_{k}}{2} \cdot (h_{k} - h_{k}) + C_{k} \cdot h_{k} + \frac{C_{k} + C_{k}}{2} \cdot (h_{k} - h_{k}) + C_{k} \cdot h_{k} + \frac{C_{k} + C_{k}}{2} \cdot (h_{k} - h_{k}) + C_{k} \cdot h_{k} + \frac{C_{k} + C_{k}}{2} \cdot (h_{k} - h_{k}) + C_{k} \cdot h_{k} + \frac{C_{k} + C_{k}}{2} \cdot (h_{k} - h$$

gdzie:

 $C_p(d_i)$ – średnie dzienne stężenie w powietrzu w danym dniu d_i

n – liczba pomiarów chwilowych stężenia w dniu d_i

 C_k – stężenie ¹³¹I w powietrzu mierzone w chwilowym pomiarze k

 h_k – czas chwilowego pomiaru k

Jako średnie dzienne steżenia frakcji aerozolowej ¹³¹I w powietrzu przyjeto średnie z pomiarów w oby Zakładach. W ocenie udziału procentowego poszczególnych postaci fizykochemicznych ¹³¹I oparto się na średnich wartościach dziennych mierzonych przez Zakład VI. Dane te przedstawia Tabela 5.4.1—1. Scałkowane stężenie I-131 dla trzech postaci fizykochemicznych wynosiło 187.2 Bq m⁻³ d i było bliskie wartości scałkowanego stężenia w powietrzu podawanemu we wcześniejszych oszacowaniach 212.5 Bq m⁻³ d /153/. Szczególne znaczenie dla wielkości opadu radioaktywnego ma udział frakcji jodu elementarnego w całkowitym stężeniu powietrza, ponieważ frakcja jodu elementarnego ma ponad 5 razy większą prędkość opadania od frakcji aerozolowej. Udział frakcji jodu elementarnego (molekularno-gazowego) zmieniał się od około 30% w okresie występowania największych stężeń ¹³¹I w powietrzu (28-30.04.1986) do powyżej 60% w okresie spadku stężenia (1-4.05.1986), a następnie do wartości około 40% w późniejszym okresie skażeń (5-20.05.1986). Udział frakcji jodu związanego z aerozolem zmieniał się od 60% w okresie największych stężeń (28-30.04.1986) do 35% w okresie obniżonego stężenia (1-4.05.1986), by wzrosnąć do powyżej 70 % w okresie ponownego wzrostu skażeń powietrza ¹³¹I (7-8.05.1986). W okresie (9-20.05.1986) udział frakcji aerozolowej zmieniał się od 20% do 50%, jednak przy poziomie skażeń poniżej 0.1 Bq/m³ nie miał istotnego wpływu na skażenie gruntu.

Stężenie frakcji aerozolowej w okresie wystąpienia największych skażeń powietrza (28-30.04 1986) równe 60%, jest wyższe od oszacowań teoretycznych z których wynika że uwolniony jod w postaci molekularno-gazowej szybko przechodzi w trzy fazy aerozolową (25%), molekularno-gazową (40%) i organiczną 35% *[159], [160].* Stężenie frakcji organicznej jest o połowę niższe. Znajomość udziału postaci fizyko-chemicznych jodu ma istotne znaczenie dla dokładności oszacowań skażenia gruntu i roślin.
	Całkowite stężenie w		Frakcje jodu [%]	
Data	powietrzu ¹³¹ I [Bq m ⁻³]	aerosolowa	molekularno-gazowa I ₂	Organiczna CH ₃ I
28-kwi-86	3.68E+01	57	41	2
29-kwi-86	7.49E+01	68	29	3
30-kwi-86	5.42E+01	62	31	7
01-maj-86	2.75E+00	34	51	16
02-maj-86	1.52E+00	32	51	17
03-maj-86	7.96E-01	27	65	9
04-maj-86	5.96E-01	35	54	11
05-maj-86	5.23E-01	38	37	25
06-maj-86	5.47E-01	44	35	21
07-maj-86	7.68E+00	82	15	2
08-maj-86	6.46E+00	64	33	3
09-maj-86	3.39E-01	28	43	29
10-maj-86	4.51E-02	20	45	34
11-maj-86	3.14E-02	19	60	21
12-maj-86	1.69E-02	34	49	17
13-maj-86	1.36E-02	51	38	11
14-maj-86	1.40E-02	50	41	10
15-maj-86	1.40E-02	50	41	10
16-maj-86	1.20E-02	47	43	10
17-maj-86	1.00E-02	43	47	10
18-maj-86	1.00E-02	43	47	10
19-maj-86	1.00E-02	43	47	10
20-mai-86	9.66E-03	46	44	10

Tabela 5.4.1—1. Średnie dzienne stężenia ¹³¹I w powietrzu w Warszawie obliczone na podstawie pomiarów Z-II i Z-VI

Miaisaawaáá	Długość	Szerokość	0	pad atmosfe	eryczny [mi	n]
mejscowosc	geograficzna	geograficzna	27-kwi-86	28-kwi-86	29-kwi-86	30-kwi-86
Inwald	19.05	51.15				14.2
Leskowiec	14.48	53.46				6.4
Morskie Oko	19.49	49.18		0.3		5.8
Zakopane	19.53	49.2		4.8		5
Miedzybrodzie Bialskie	19.05	49.45				12.4
Opole	17.52	50.42				4.2
Ząbkowice	18.57	50.18				1.8
Wisła	18.45	49.36				6.1
Bielsko-Biała	19	49.48				3
Brenna	18.52	49.45				4.4
Stare Olesno	18.36	50.51				11
Racibórz	18.07	50				5.7
Istebna Kubalonka	18.45	49.34				7.3
Katowice Muchowiec	18.54	50.15				1.5
Korfantów	17.36	50.3			0.1	1.5
Głuchołazy	17.16	50.18				3.7
Lądek Zdrój	16.54	50.16				6.2
Bolesławów	16.44	50.14				4
Otmuchów	17.14	50.3				3
Długopole Zdrój	16.36	50.15				10.8
Brwinów	20.43	52.11				7.3
Bezek	23.16	51.12				2.6
Bonowice-Szczekociny	19.51	50.38	2			2

Tabela 5.4.1—2. Opady atmosferyczne w Polsce w okresie podwyższonych skażeń powietrza ¹³¹I

Rysunek 5.4.1—1: Porównanie pomiarów stężenia ¹³¹I w powietrzu przeprowadzonych przez Z-II i Z-VI

5.4.2 Skażenie gruntu

Na wielkość depozycji ¹³¹I na powierzchnię ziemi istotny wpływ ma szybkość opadania opadu suchego, to znaczy prędkości osadzanie frakcji aerozolowej i molekularno-gazowej oraz opad mokry, czyli osadzanie się frakcji aerozolowej i gazowo-molekularnej w wyniku wymywania przez deszcz. Znaczny wpływ na wielkość skażenia powierzchni ziemi miały opady, które wystąpiły lokalnie w Polsce 30-04-1986 (Tabela 5.4.1—2). Jednakże brak danych pomiarowych skażeń gruntu w tych miejscach uniemożliwia weryfikację modelu.. Przyjęto warunki atmosferyczne charakterystyczne dla Polski centralnej tzn. bez intensywnych deszczy 30-04-86. Uwzględniono natomiast deszcze występujące 7-8 maja gdyż w tym okresie wystąpiły większe skażenia powietrza około 10 Bq m³.

W obliczeniach depozycji i skażenia gruntu przyjęto rozkład frakcji aerozolowej według pomiarów przeprowadzonych w Pradze [9] i w Monachium-Neuherberg [161].

Średnia rozkładu aerozoli $E(D_{ae})$ wynosiła 0.4 µm z Odchyleniem Standardowym SD(D_{ae}) 3 µm. Rozkład ten przedstawia Rysunek 4.3.2—1. Przyjęty rozkład dawał prędkość depozycji 1.810⁻³m/s dla frakcji aerozolowej. Wartość ta mieściła się w zakresie prędkości osadzania aerozolu na trawie, określonym w czasie awarii w Czarnobylu 1÷2×10⁻³ m/s [22].

Prędkość opadania frakcji jodu elementarnego przyjęto jako równą 1×10^{-2} m/s oraz jodu związanego organicznie CH₃J równą 5.0×10^{-4} m/s [22]. Wartość ta jest również bliska wartości rekomendowanej przez modele opracowywane dla Europy RODOS (1.5×10^{-3} m/s) [27].

Na podstawie przyjętych założeń otrzymano średni opad całkowity ¹³¹I równy 74.5 kBq/m² z 95% zakresem ufności od 34.8 kBq/m² do 159.5 kBq/m². Obliczenia modelowe wskazują że w przypadku wystąpienia opadu około 10mm można się spodziewać dodatkowego skażenia gruntu $50\div100 \text{ kBq/m}^2$ (współczynnik wymywania, tzw. washout ratio wynosi $9\times10^4 \div 2\times10^5$ [m³_{powietrze}/m³_{deszez}]), natomiast wkład opadów z okresu 8-9 maja 1986 do skażeń gruntu był mały, wynosił około 3kBq i stanowił mniej niż 4% opadu. Weryfikacja przewidywań modelu na bazie wyników pomiarów jest utrudniona z powodu braku spójnych danych pomiarowych ¹³¹I. Pomiary stężenia ¹³¹I w glebie przeprowadzono w różnym czasie w 4 miejscach w Polsce. Pomiary prowadzono w miejscach, gdzie nie występowały intensywne deszcze w dniu 30.04.1986. W celu porównania obliczono tzw. opad skumulowany w ziemi czyli wielkość skażenia gruntu w wyrażoną w Bq/m² w funkcji czasu . Wartości pomiarowe, obliczone średnie oraz opad przewidywany przedstawia Tabela 5.4.2—1, oraz Rysunek 5.4.2—1. Wskaźnik niezawodności RI wynosi 1.94 co wskazuje, że około 70% wyników pomiarów zawiera się w zakresie wartości przewidywanych P (2×P;1/2×P). Współczynnik korelacji transformacji log-

normalnej wartości przewidywanych i średnich wartości pomiarowych wynosi 0.69, natomiast współczynnik liniowy logarytmów wynosi 0.4, wskazuje to, że zanik skażenia ¹³¹I w wierzchniej warstwie ziemi mógł by być dwa razy większy niż to co przewiduje model. Wartości przewidywane w większości przypadków mieszczą się w zakresie 95% przedziału ufności średnich. Należy podkreślić że za taką wielkością opadu mogą przemawiać porównania z innymi komponentami ekosystemu. 95% przedział ufności przewidywań modelu zawiera się w granicach (3×P, 1/3×P). Pozwala to stwierdzić, że przewidywania modelu odnośnie skażeń gruntu w przypadku braku intensywnego opadu deszczu są prawidłowe.

Według przewidywań modelu maksymalny opad¹³¹I wynosił około 250 kB/m².

Dla terenów, gdzie deszcze nie padały albo padały po ustąpieniu skażeń powietrza możliwe jest oszacowanie stosunku opadu ¹³¹I do ¹³⁷Cs . Przyjmując że:

- scałkowane stężenie ¹³¹I w powietrzu było dziesięciokrotnie wyższe niż ¹³⁷Cs. Scałkowane stężenie ¹³¹I wynosiło 187 Bq m⁻³ d oraz scałkowane stężenie ¹³⁷Cs 18.2 Bq m⁻³ d (zgodnie z oszacowaniem przeprowadzonym w tej pracy Rozdział 5.4.1 i 5.5.1) oraz odpowiednio dla ¹³¹I- 212.5 Bq m⁻³ d oraz dla ¹³⁷Cs 24.4 Bq m⁻³ d (według oceny K. Żarnowieckiego [153]),
- prędkość osadzania frakcji jodu elementarnego jest równa około 10×10⁻³ m/s, prędkość osadzania frakcji jodu organicznego 5×10⁻⁴ m/s oraz prędkość osadzania aerozolu równą 1.8×10⁻³ m/s,
- udział frakcji jodu związanego z aerozolem 62%, jodu molekularno-gazowego 34%, jodu organicznego - 4% - taku udzieł frakcji był charakterystyczny dla maksymalnych skażeń powietrza nad Polską w okresie 28 – 30 kwietnia 1986,
- 4. cez w powietrzu występował tylko jako frakcja aerozolowa,
- prędkość osadzania frakcji aerozolowej cezu równy prędkości osadzania frakcji aerozolowej jodu 1.8×10⁻³ m/s.

Otrzymujemy stosunek opadu ¹³¹I/¹³⁷Cs jako:

$$\frac{\left[62\%\times(1.8\times10^{-3})+34\%\times(1\times10^{-2})+4\%\times(5\times10^{-4})\right]^{l-131}\times10}{\left[100\%\times(1.8\times10^{-3})\right]^{C_{S}-137}}\cong25$$

czyli opad ¹³¹I jest 25 krotne wyższy niż opadu ¹³⁷Cs).

Przy założeniu 100% frakcji aerozolowej jodu otrzymujemy stosunek opad ¹³¹I/opad ¹³⁷Cs równy 10. Przy założeniu 100% frakcji molekularno-gazowej jodu stosunek opad ¹³¹I/¹³⁷Cs wynosi 56. Potwierdza to analiza pomiarów skażeń gleby, gdzie średni współczynnik stosunku ¹³¹I/¹³⁷Cs wynosi 28 z zakresem 95% przedziału ufności równym 20.5 ÷ 39.9. Podobne wartości otrzymano w pracy *[154]* gdzie stosunek opadu ¹³¹I do opadu ¹³⁷Cs wynosił: dla rejonów północno-wschodnich Polski - 60, dla Polski centralnej i Warszawy –30, dla rejonów południowych - 15.

					J - J								
	Polski wartości pomiarowe wartości											i	
			ſkBo	$1/m^2$			wartoś	ci pomi	arowe	nrze	widvw	ane	
			Mieiso	rowość			[]	cBq/m^2			$r Ra/m^2$	² 1	
-			witejse	000050						L1	τDq/ III	1	
Data	Cdaáala	Varlause	Vraltáry	Warazawa		Zawada		95% pr	zedział		95% p	rzedział	
	Gaansk	Góra Ø	Krakow	warszawa	Winiary	6	,	ufn	ości	,	ufn	ości	
		(woi			\$(woj.	(woj.	Srednie	śred	niej	Srednie	śrec	dniej	P/C
		Katow.)			Krak.)	Katow.)	dzienne	Kres	Kres	dzienne	Kres	Kres	1
								dolny	górny		dolnv	górny	
29 kwi 86				196.6			196.6		8	43.5	20.3	92.8	0 2
30 kwi 86		73.7		150.0		116.1	116.0	81.1	165.9	60.3	28.2	128.7	0.5
01 mai 86		68.7	23.6		98.9	64.0	68.3	38.9	120.1	56.7	26.5	121.0	0.8
02 mai 86		54.9				68.8	62.2	51.6	75.1	52.7	24.6	112.4	0.8
03 maj 86		67.4		189.8		39.7	134.1	62.4	288.2	48.9	22.8	104.3	0.3
04 maj 86		54.5		228.7		33.8	160.5	56.6	455.2	45.1	21.1	96.2	0.2
05 maj 86		48.1		172.5		37.6	119.1	53.1	267.0	41.6	19.4	88.8	0.3
06 mai 86		45.5		29.8		23.6	33.5	24.1	46.6	38.4	17.9	81.9	1.1
07 maj 86		36.0		23.0		23.1	27.6	21.5	35.5	37.2	17.4	79.4	1.3
08 maj 86		31.3				24.5	28.1	22.9	34.5	37.7	17.6	80.4	1.3
09 mai 86		5.7		66.4		23.0	54.0	14.5	201.4	34.8	16.3	74.3	0.6
10 maj 86		38.1		69.0		13.8	53.0	25.3	110.8	31.9	14.9	68.1	0.
11 maj 86		28.0		79.0		29.4	56.4	33.0	96.7	29.3	13.7	62.5	0.5
12 maj 86			ĺ	21.5			21.7	17.8	26.4	26.9	12.6	57.4	1.2
13 maj 86	ĺ		İ							24.6	11.5	52.5	1
14 maj 86	0.1		ĺ	22.1			14.7	0.1	25.1	22.6	10.6	48.2	1.5
15 maj 86	0.2			28.3			14.3	0.2	28.3	20.8	9.7	44.4	1.4
16 maj 86				22.0			22.0	22.0	22.0	19.0	8.9	40.5	0.8
17 maj 86				11.1			11.1	11.1	11.1	17.5	8.2	37.3	1.5
18 maj 86				6.0			6.0	6.0	6.0	16.0	7.5	34.1	2.6
19 maj 86				9.0	23.4	0.6	8.5	0.7	23.4	14.7	6.9	31.4	1.7
20 maj 86				16.0			16.0	16.0	16.0	13.5	6.3	28.8	0.8
21 maj 86				20.4			20.4	20.4	20.4	12.4	5.8	26.5	0.6
22 maj 86										11.4	5.3	24.3	
23 maj 86										10.4	4.9	22.2	,
24 maj 86										9.6	4.5	20.4	
25 maj 86										8.8	4.1	18.7	
26 maj 86						0.5	0.5	0.5	0.5	8.1	3.8	17.2	
27 maj 86										7.4	3.5	15.8	
28 maj 86										6.8	3.2	14.5	
29 maj 86										6.2	2.9	13.3	
30 maj 86										5.7	2.7	12.2	
31 maj 86										5.2	2.5	11.2	
01 cze 86				ļ						4.8	2.2	10.2	
$02 \operatorname{cze} 86$										4.4	2.1	9.4	
03 cze 86										4.4	2.1	9.4	

^① Określono na podstawie warstwy 5 cm, przy gęstości gleby 1.3 g/cm³. Przelicznik [65m² kg⁻¹]

<sup>Określono na podstawie warstwy 5 cm, przy gęstości gleby 1.3 g/cm³. Przelicznik [91m²kg⁻¹]
Określono na podstawie warstwy 3 cm, dane oryginalne podane przez autorów w [Bqm⁻²]
Określono na podstawie warstwy 5 cm, przy gęstości gleby 1.3 g/cm³. Przelicznik [65m²kg⁻¹]
Określono na podstawie warstwy 2 cm, przy gęstości gleby 1.3 g/cm³. Przelicznik [26m²kg⁻¹]
Określono na podstawie warstwy 7 cm, przy gęstości gleby 1.3 g/cm³. Przelicznik [91m²kg⁻¹]
Określono na podstawie warstwy 7 cm, przy gęstości gleby 1.3 g/cm³. Przelicznik [91m²kg⁻¹]</sup>

Rysunek 5.4.2—1: Porównanie przewidywanych przez model wartości skumulowanego opadu¹³¹ I z wartościami pomiarowymi

5.4.3 Skażenie trawy

Przewidywane stężenie ¹³¹I w trawie pastwiskowej obliczono na podstawie obliczonej uprzednio depozycji dziennej ¹³¹I, przyjmując gęstość pokrywy trawy w okresie 29.04-3.05.1986 równą 0.9 kg/m² św. masy., co przy przyjętej 15% zawartości suchej masy daje współczynnik zatrzymywania opadu suchego liczony według formuły Chamberlaine'a 0.3 (Tabela 5.4.3—1).

Zanik radionuklidu w wyniku procesów pogodowych przyjęto jako równy 8 dni (z korektą na rozpad); mieściło się to w zakresie wartości podawanych w badaniach po awarii w Czarnobylu $5\div18$ [d] *[37]*. Wartości pomiarowe reprezentują pojedynczą serię pomiarów stężenia ¹³¹I w trawie z Warszawy *[147]*. Wskaźnik niezawodności RI wynosi 2.1, wskazując że około 68% wyników pomiarów zawiera się w zakresie wartości przewidywanych P (2×P;1/2×P). Współczynnik korelacji transformacji log-normalnej wartości przewidywanych i średnich wartości pomiarowych wynosi 0.9 , natomiast współczynnik liniowy logarytmów wynosi 0.54. Oznacza to, że okres połowicznego zaniku wartości pomiarowych jest krótszy (4 dni), ale może to być wytłumaczone początkowo wysoką frakcją jodu elementarnego osadzanego na roślinach. Kres górny i dolny 95% przedziału ufności przewidywań modelu zawiera się w granicach (2.5×P, 1/ 2.5×P) i obejmuje większość danych pomiarowy (Rysunek 5.4.3—1). Przewidywane wartości w trawie przyjęto do dalszych obliczeń.

[E	osci przewid Bq kg ⁻¹ św.ma	ywane 1sy]	war [B			
Średnie dzienne	95% przedzialu ufności średniej Kres dolny Kres górny		średnie	95% przed śrec	ział ufności Iniej	Współczy nniki P/O Średnie dzienne
			uzienne	Kres dolny	Kres górny	uzienne
5.90E+03	2.45E+03	1.43E+04				
1.61E+04	6.67E+03	3.89E+04				
3.78E+04	1.56E+04	9.12E+04				
3.15E+04	1.30E+04	7.59E+04				
2.62E+04	1.09E+04	6.33E+04				
2.20E+04	9.09E+03	5.30E+04	6.20E+04	6.20E+04	6.20E+04	0.35
1.84E+04	7.63E+03	4.44E+04	4.10E+04	4.10E+04	4.10E+04	0.45
1.54E+04	6.40E+03	3.73E+04				
1.30E+04	5.39E+03	3.14E+04	1.10E+04	1.10E+04	1.10E+04	1.18
1.16E+04	4.82E+03	2.81E+04	1.96E+04	1.96E+04	1.96E+04	0.59
1.03E+04	4.27E+03	2.49E+04	6.70E+03	6.70E+03	6.70E+03	1.54
8.67E+03	3.59E+03	2.09E+04	5.80E+03	5.80E+03	5.80E+03	1.50
7.28E+03	3.02E+03	1.76E+04	4.38E+03	4.38E+03	4.38E+03	1.66
6.13E+03	2.54E+03	1.48E+04	2.35E+03	2.35E+03	2.35E+03	2.61
5.15E+03	2.13E+03	1.24E+04	4.30E+03	4.30E+03	4.30E+03	1.20
4.33E+03	1.80E+03	1.05E+04	1.27E+03	1.27E+03	1.27E+03	3.41
3.65E+03	1.51E+03	8.80E+03	2.80E+03	2.80E+03	2.80E+03	1.30
3.07E+03	1.27E+03	7.40E+03	1.43E+03	7.00E+01	2.79E+03	2.14
2.58E+03	1.07E+03	6.23E+03	1.33E+03	1.33E+03	1.33E+03	1.94
2.17E+03	9.00E+02	5.24E+03				
1.83E+03	7.57E+02	4.41E+03	5.11E+02	5.11E+02	5.11E+02	3.58
1.54E+03	6.38E+02	3.72E+03	7.50E+02	7.50E+02	7.50E+02	2.05
1.30E+03	5.38E+02	3.13E+03				
1.09E+03	4.53E+02	2.64E+03				
9.20E+02	3.81E+02	2.22E+03				
7.74E+02	3.21E+02	1.87E+03				
6.51E+02	2.70E+02	1.57E+03				
skaźnik niez	zawodności I	RI za okres 2	9 kwiecień-	25 maj 1986	wynosił 2.	l,
	Wspólc	zynnik korel	acji log-nor	m 0.9,	-	
	Współczyni	niki prostej L	n(P)=0.54*	ln(O)+4.1		
	Í Í Í Í Í Í Í Í Í Í Í Í Í Í Í Í Í Í Í Í Í Í Í Í Í Í Í Í Í Í Í Í Í Í Í Í Í Í Í Í Í Í Í Í Í Í Í Í Í Í Í Í Í Í Í Í <td< td=""><td>[Bq kg⁻¹ św.ma Średnie dzienne 95% przedz śred 5.90E+03 2.45E+03 1.61E+04 6.67E+03 3.78E+04 1.56E+04 3.15E+04 1.30E+04 2.62E+04 1.09E+04 2.20E+04 9.09E+03 1.84E+04 7.63E+03 1.54E+04 6.40E+03 1.30E+04 5.39E+03 1.16E+04 4.82E+03 1.03E+04 4.27E+03 8.67E+03 3.59E+03 7.28E+03 3.02E+03 6.13E+03 2.54E+03 5.15E+03 1.30E+04 4.33E+03 1.80E+03 3.65E+03 1.51E+03 3.07E+03 1.27E+03 2.58E+03 1.07E+03 2.17E+03 9.00E+02 1.83E+03 7.57E+02 1.54E+03 6.38E+02 1.30E+03 5.38E+02 1.09E+03 4.53E+02 9.20E+02 3.81E+02 7.74E+02 3.21E+02 6.51E+02 2.70E+02</td><td>$\begin{bmatrix} Bq \ kg^{-1} \ św.masy \end{bmatrix}$</td><td>$\begin{bmatrix} Bq kg^{-1} & sw.masy \end{bmatrix}$ $\begin{bmatrix} Bq kg^{-1} & sw.masy \end{bmatrix}$ $\begin{bmatrix} Bq kg^{-1} & sw.masy \end{bmatrix}$ $\begin{bmatrix} Bq kg^{-1} & sw.masy \end{bmatrix}$ $\begin{bmatrix} Bq kg^{-1} & sw.masy \end{bmatrix}$ $\begin{bmatrix} Bq kg^{-1} & sw.masy \end{bmatrix}$ $\begin{bmatrix} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ \end{cases} $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ \end{cases} $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ \end{cases} $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ \end{cases} $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ \end{cases} $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ \end{cases} $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ \end{cases} $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ \end{cases} \end{cases} $\begin{cases} Srednie \\ dzienne \end{bmatrix}$ \end{cases} $\\ \\ Srednie \\ dzienne \end{bmatrix}$ \end{cases} \end{cases} $\\ \begin{cases} Srednie \\ dzienne \end{bmatrix}$ \end{cases} $\\ \\ Srednie \\ dzienne \end{bmatrix}$ $\\ \\ Srednie \\ dzienne \end{bmatrix}$ $\\ \\ Srednie \\ dzienne \end{bmatrix}$ $\\ \\ Srednie \\ dzienne \end{bmatrix}$ $\\ \\ Srednie \\ dzienne \end{bmatrix}$ $\\ \\ Srednie \\ dzienne \end{bmatrix}$ $\\ \\ Srednie \\ dzienne \\ dzienne \\ dzienne \\ dzienne \\ dzienne \\ dzienne \\ dzienne \\ d$</td><td>$\begin{bmatrix} Bq \ kg^{-1} \ sw.masy] \\ \hline Bq \ kg^{-1} \ sw.masy] \\ \hline Bq \ kg^{-1} \ sw.masy] \\ \hline Bq \ kg^{-1} \ sw.masy] \\ \hline Bq \ kg^{-1} \ sw.masy] \\ \hline Bq \ kg^{-1} \ sw.masy] \\ \hline Bq \ kg^{-1} \ sw.masy] \\ \hline Bq \ kg^{-1} \ sw.masy] \\ \hline Bq \ kg^{-1} \ sw.masy] \\ \hline Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperi\ Symperime \ Symperime \ Symperi\ Symperime \ Symperi\ Symperi\ S$</td><td>$\begin{bmatrix} Bq kg^{-1} \hat{s}w.masy] \\ \hline Bq kg^{-1} \hat{s}w.masy] \\ \hline Bq kg^{-1} \hat{s}w.masy] \\ \hline Bq kg^{-1} \hat{s}w.masy] \\ \hline Bq kg^{-1} \hat{s}w.masy] \\ \hline Bq kg^{-1} \hat{s}w.masy] \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopper$</td></td<>	[Bq kg ⁻¹ św.ma Średnie dzienne 95% przedz śred 5.90E+03 2.45E+03 1.61E+04 6.67E+03 3.78E+04 1.56E+04 3.15E+04 1.30E+04 2.62E+04 1.09E+04 2.20E+04 9.09E+03 1.84E+04 7.63E+03 1.54E+04 6.40E+03 1.30E+04 5.39E+03 1.16E+04 4.82E+03 1.03E+04 4.27E+03 8.67E+03 3.59E+03 7.28E+03 3.02E+03 6.13E+03 2.54E+03 5.15E+03 1.30E+04 4.33E+03 1.80E+03 3.65E+03 1.51E+03 3.07E+03 1.27E+03 2.58E+03 1.07E+03 2.17E+03 9.00E+02 1.83E+03 7.57E+02 1.54E+03 6.38E+02 1.30E+03 5.38E+02 1.09E+03 4.53E+02 9.20E+02 3.81E+02 7.74E+02 3.21E+02 6.51E+02 2.70E+02	$ \begin{bmatrix} Bq \ kg^{-1} \ św.masy \end{bmatrix} $	$ \begin{bmatrix} Bq kg^{-1} & sw.masy \end{bmatrix} $ $ \begin{bmatrix} Bq kg^{-1} & sw.masy \end{bmatrix} $ $ \begin{bmatrix} Bq kg^{-1} & sw.masy \end{bmatrix} $ $ \begin{bmatrix} Bq kg^{-1} & sw.masy \end{bmatrix} $ $ \begin{bmatrix} Bq kg^{-1} & sw.masy \end{bmatrix} $ $ \begin{bmatrix} Bq kg^{-1} & sw.masy \end{bmatrix} $ $ \begin{bmatrix} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \end{cases} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \end{cases} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \end{cases} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \end{cases} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \end{cases} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \end{cases} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \end{cases} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \end{cases} $ $ \end{cases} $ $ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \end{cases} $ $ \\ \\ Srednie \\ dzienne \end{bmatrix} $ $ \end{cases} $ $ \end{cases} $ $ \\ \begin{cases} Srednie \\ dzienne \end{bmatrix} $ $ \end{cases} $ $ \\ \\ Srednie \\ dzienne \end{bmatrix} $ $ \\ \\ Srednie \\ dzienne \end{bmatrix} $ $ \\ \\ Srednie \\ dzienne \end{bmatrix} $ $ \\ \\ Srednie \\ dzienne \end{bmatrix} $ $ \\ \\ Srednie \\ dzienne \end{bmatrix} $ $ \\ \\ Srednie \\ dzienne \end{bmatrix} $ $ \\ \\ Srednie \\ dzienne \\ dzienne \\ dzienne \\ dzienne \\ dzienne \\ dzienne \\ dzienne \\ d$	$ \begin{bmatrix} Bq \ kg^{-1} \ sw.masy] \\ \hline Bq \ kg^{-1} \ sw.masy] \\ \hline Bq \ kg^{-1} \ sw.masy] \\ \hline Bq \ kg^{-1} \ sw.masy] \\ \hline Bq \ kg^{-1} \ sw.masy] \\ \hline Bq \ kg^{-1} \ sw.masy] \\ \hline Bq \ kg^{-1} \ sw.masy] \\ \hline Bq \ kg^{-1} \ sw.masy] \\ \hline Bq \ kg^{-1} \ sw.masy] \\ \hline Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperime \ Symperi\ Symperime \ Symperime \ Symperi\ Symperime \ Symperi\ Symperi\ S$	$ \begin{bmatrix} Bq kg^{-1} \hat{s}w.masy] \\ \hline Bq kg^{-1} \hat{s}w.masy] \\ \hline Bq kg^{-1} \hat{s}w.masy] \\ \hline Bq kg^{-1} \hat{s}w.masy] \\ \hline Bq kg^{-1} \hat{s}w.masy] \\ \hline Bq kg^{-1} \hat{s}w.masy] \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopperskip \\ \hline Svopper$

Tabela 5.4.3—1. Stężenie ¹³¹I w trawie pastwiskowej – wartości przewidywane i pomiarowe

Rysunek 5.4.3—1: Porównanie przewidywanych przez model wartości stężenia ¹³¹ I w trawie z wartościami pomiarowymi

5.4.4 Skażenie mleka krów

Przewidywane i mierzone średnie dzienne stężenia ¹³¹I w mleku przedstawia Tabela 5.4.4—1. Wartości przewidywane otrzymano na podstawie wyliczonego stężenia ¹³¹I w trawie (Rozdział 5.4.3), przy założeniu że krowa zjada dziennie 50 kg trawy. Ze względu na intensywny wypas krów w okresie maj-październik, trawa pastwiskowa jest głównym źródłem skażenia mleka. Przyjęty ekwiwalent funkcji retencji jodu dla mleka wynosił:

```
współczynnik równowagi:1.6×10-3 [d L-1]udział składowej szybkiej:99%okres połowicznego zaniku składowej szybkiej:0.68 dniokres połowicznego zaniku składowej wolnej:17 dni
```

Przyjęty współczynnik równowagi mieścił się w dolnym limicie wartości podawanych w literaturze: średnia 3.4×10^{-3} d L⁻¹ z zakresem $0.8 \div 8 \times 10^{-3}$ d⁻¹ [37], oraz 10×10^{-3} d L⁻¹ z zakresem (1÷35)×10⁻³ d L⁻¹ [21]. Przy jego zastosowaniu wartości przewidywane zbliżone były do wartości pomiarowych. Prawdopodobnie niższy współczynnik przejścia ¹³¹I z trawy do mleka mógł być spowodowany niedoborem jodu w karmie krów.

Porównanie wartości przewidywanych przez model z wartościami pomiarowymi w okresie 28 kwietnia 1986 ÷ 8 czerwca 1986 przedstawia Tabela 5.4.4—1 oraz Rysunek 5.4.4—1. Średnie dzienne stężenia ¹³¹I w mleku odnosza się do całej Polski. Wskaźnik niezawodności RI wynosi 2.1 co oznacza, że około 68% wyników pomiarów zawiera się w zakresie wartości przewidywanych P (2×P;1/2×P). Współczynnik korelacji transformacji log-normalnej wartości przewidywanych i średnich wartości pomiarowych wynosi 0.88, natomiast współczynnik liniowy logarytmów wynosi 1.45, wskazując że okres połowicznego zaniku wartości pomiarowych jest dłuższy od okresu połowicznego zaniku wartości przewidywanych. Dla mleka w całej Polsce wynosił on 5.7 dni z 95% przedziałem ufności równym 5÷6.7 dni. Rysunek 5.4.4-2 przedstawia porównanie przewidywań z pomiarami wysoko skażonego woj. Ostrołeckiego, gdzie zakaz wypasu krów nie był przestrzegany. Punkty pomiarowe obrazuja stężenia ¹³¹I w jednej ze zlewni mierzone w stacji SPSP w Ostrołęce. Wskaźnik niezawodności RI wynosi 2.1, co wskazuje, że około 68% wyników pomiarów zawiera się w zakresie wartości przewidywanych P (2×P;1/2×P). Współczynnik korelacji transformacji log-normalnej wartości przewidywanych i średnich wartości pomiarowych wynosi 0.73, natomiast współczynnik liniowy logarytmów wynosi 0.9; co oznacza że okres połowicznego zaniku wartości pomiarowych jest zgodny z okresem połowicznego zaniku wartości przewidywanych. Dla pomiarów z Ostrołęki wynosił on 4.6 dni z 95% przedziałem ufności równym 3.8÷5.9 dni i jest prawie dwa razy mniejszy niż pół-okres rozpadu¹³¹I. Za ten krótszy półokres moga być odpowiedzialne warunki pogodowe, które powodują usuwanie jodu z powierzchni trawy. Wyliczony na podstawie powyższych danych półokres rozpadu aktywności trawy wynosi 10.7 dni z 95% przedziałem ufności równym 7÷22 dni. Wartość ta jest bliska wartościom literaturowym [37].

Kres górny i dolny 95% przedział ufności przewidywań modelu obejmujący większość danych pomiarowych zawiera się w granicach (3.7×P, 1/3.7×P).

Istotne jest, że przewidywania modelu dobrze określają dynamikę zmian skażenia mleka gdy stężeńie ¹³¹I w powietrzu uległo radykalnemu obniżeniu po 1 maja 1986. Największe stężenie ¹³¹I w mleku pojawia się 1-2 maja 1986 z przesunięciem około jednego dnia w stosunku do maksymalnego stężenia I-131 w trawie 30-04-1986 i z przesunięciem około jednego dnia w

119

stosunku do maksymalnego dziennego stężenia jodu w powietrzu 29-04-1986. Powodem tego przesunięcia jest akumulacja opadu na trawie, w wyniku dwudniowego dość wysokiego stężenia ¹³¹I w powietrzu, oraz czasem jaki upływa między wchłonięciem ¹³¹I przez krowę, a udojem. Przewidziane stężenie ¹³¹I w mleku jest charakterystyczne dla tych rejonów w Polsce, gdzie można było się spodziewać określonej modelem depozycji ¹³¹I. W miejscach, gdzie lokalnie występowały intensywne opady deszczu, obliczenia modelowe wskazują na dwukrotnie większe skażenie gruntu. Praktyczna skuteczność wprowadzanych akcji zapobiegawczych jak np. zakaz wypasu krów jest często decydującym czynnikiem wpływającym na wiarygodność przewidywań modelu.

	Wartości	przewidywa	ne [Bq L ⁻¹]	Wartości	pomiarowe	$[Bq L^{-1}]$	D/O
Data	Ś	95% przedz	ział ufności	Śradnia.	95% przed	ział ufności	P/U Śradnia
Data	drianna	śred	lniej	Srednie	śrec	lniej	dzienne
	uzienne	Kres dolny	Kres górny	uzienne	Kres dolny	Kres górny	uzienne
28-kwi-86	1.63E+02	4.37E+01	6.08E+02	3.67E+02	1.05E+02	1.29E+03	0.44
29-kwi-86	6.24E+02	1.68E+02	2.33E+03	7.08E+02	2.69E+02	1.86E+03	0.88
30-kwi-86	1.60E+03	4.30E+02	5.96E+03	4.95E+02	2.87E+02	8.54E+02	3.24
01-maj-86	2.18E+03	5.86E+02	8.12E+03	3.09E+02	1.83E+02	5.22E+02	7.06
02-maj-86	2.13E+03	5.70E+02	7.92E+03	5.52E+02	3.35E+02	9.09E+02	3.85
03-maj-86	1.89E+03	5.07E+02	7.02E+03	4.96E+02	3.04E+02	8.09E+02	3.81
04-maj-86	1.62E+03	4.35E+02	6.03E+03	5.89E+02	3.96E+02	8.77E+02	2.75
05-maj-86	1.37E+03	3.68E+02	5.11E+03	3.40E+02	2.55E+02	4.53E+02	4.03
06-maj-86	1.16E+03	3.10E+02	4.31E+03	4.76E+02	3.42E+02	6.62E+02	2.43
07-maj-86	9.94E+02	2.67E+02	3.71E+03	3.70E+02	2.76E+02	4.96E+02	2.69
08-maj-86	8.73E+02	2.34E+02	3.25E+03	4.86E+02	2.98E+02	7.92E+02	1.80
09-maj-86	7.58E+02	2.04E+02	2.82E+03	5.97E+02	3.46E+02	1.03E+03	1.27
10-maj-86	6.47E+02	1.74E+02	2.41E+03	3.88E+02	3.05E+02	4.94E+02	1.67
11-maj-86	5.48E+02	1.47E+02	2.04E+03	5.60E+02	2.15E+02	1.46E+03	0.98
12-maj-86	4.63E+02	1.24E+02	1.72E+03	2.57E+02	2.00E+02	3.32E+02	1.80
13-maj-86	3.91E+02	1.05E+02	1.46E+03	3.32E+02	2.32E+02	4.74E+02	1.18
14-maj-86	3.29E+02	8.85E+01	1.23E+03	2.52E+02	1.82E+02	3.48E+02	1.31
15-maj-86	2.78E+02	7.48E+01	1.04E+03	2.45E+02	1.83E+02	3.27E+02	1.14
16-maj-86	2.35E+02	6.31E+01	8.75E+02	1.62E+02	1.10E+02	2.39E+02	1.45
17-maj-86	1.98E+02	5.32E+01	7.39E+02	1.37E+02	9.81E+01	1.90E+02	1.45
18-maj-86	1.68E+02	4.51E+01	6.24E+02	1.62E+02	1.16E+02	2.26E+02	1.03
19-maj-86	1.42E+02	3.81E+01	5.29E+02	1.18E+02	7.67E+01	1.83E+02	1.20
20-maj-86	1.20E+02	3.23E+01	4.48E+02	1.28E+02	1.04E+02	1.59E+02	0.94
21-maj-86	1.02E+02	2.73E+01	3.80E+02	1.45E+02	8.79E+01	2.41E+02	0.70
22-maj-86	8.64E+01	2.32E+01	3.22E+02	7.27E+01	5.66E+01	9.33E+01	1.19
23-maj-86	7.33E+01	1.97E+01	2.73E+02	7.76E+01	5.01E+01	1.20E+02	0.94
24-maj-86	6.22E+01	1.67E+01	2.32E+02	6.96E+01	4.68E+01	1.03E+02	0.89
25-maj-86	5.28E+01	1.42E+01	1.97E+02	6.64E+01	3.61E+01	1.22E+02	0.80
26-maj-86	4.49E+01	1.21E+01	1.67E+02	8.39E+01	3.27E+01	2.15E+02	0.54
27-maj-86	3.82E+01	1.03E+01	1.42E+02	8.28E+01	5.90E+01	1.16E+02	0.46
28-maj-86	3.26E+01	8.75E+00	1.21E+02	8.48E+01	2.91E+01	2.47E+02	0.38
29-maj-86	2.78E+01	7.47E+00	1.03E+02	5.52E+01	3.04E+01	1.00E+02	0.50
30-maj-86	2.37E+01	6.37E+00	8.84E+01	2.23E+01	1.25E+01	4.00E+01	1.06
31-maj-86	2.03E+01	5.44E+00	7.56E+01	2.97E+01	7.37E+00	1.20E+02	0.68
01-cze-86	1.74E+01	4.67E+00	6.47E+01	2.90E+01	2.90E+01	2.90E+01	0.60
02-cze-86	1.49E+01	4.01E+00	5.55E+01	3.11E+01	1.88E+01	5.15E+01	0.48
03-cze-86	1.28E+01	3.45E+00	4.77E+01	1.67E+01	1.67E+01	1.67E+01	0.77
04-cze-86	1.10E+01	2.96E+00	4.10E+01	3.99E+01	1.84E+01	8.64E+01	0.28
05-cze-86	9.49E+00	2.55E+00	3.53E+01	3.25E+01	3.62E+00	5.50E+01	0.29
06-cze-86	8.18E+00	2.20E+00	3.05E+01	2.41E+01	5.58E+00	1.04E+02	0.34
07-cze-86	7.08E+00	1.90E+00	2.63E+01	1.56E+01	1.56E+01	1.56E+01	0.45
08-cze-86	6.13E+00	1.65E+00	2.28E+01	1.84E+01	1.84E+01	1.84E+01	0.33
Wsk	aźnik nieza	wodności RI	za okres 29 k	wiecień-4 cze	rwiecj 1986 v	wynosił 2.1	
		Wspólcz	ynnik korela	cji log-norm 0	.88,	J,	
		Współczyn	niki prostej L	$n(P) = 1.4 \ln(0)$))-2.18		

Tabela 5.4.4—1. Stężenie ¹³¹I w mleku krów – wartości przewidywane i pomiarowe dla całej Polski

Rysunek 5.4.4—1: Porównanie przewidywanych przez model wartości stężenia ¹³¹ I w mleku z wartościami pomiarowymi

	Wartości	przewidywa	ne [Bq L ⁻¹]	Wartości	pomiarowe	[Bq L ⁻¹]	D/O
Data	Ś na dmia	95% przed	ział ufności	Śradnia.	95% przed	ział ufności	P/U Śradnia
Data	drianna	śrec	lniej	dzienne	śrec	lniej	dzienne
	dzienne	Kres dolny	Kres górny	dzienne	Kres dolny	Kres górny	uzienne
28-kwi-86	1.63E+02	4.37E+01	6.08E+02	3.67E+02	1.05E+02	1.29E+03	0.44
01-maj-86	2.18E+03	5.86E+02	8.12E+03				
02-maj-86	2.13E+03	5.70E+02	7.92E+03				
03-maj-86	1.89E+03	5.07E+02	7.02E+03	2.45E+03	2.45E+03	2.45E+03	0.83
04-maj-86	1.62E+03	4.35E+02	6.03E+03				
05-maj-86	1.37E+03	3.68E+02	5.11E+03	1.03E+03	1.03E+03	1.03E+03	1.46
06-maj-86	1.16E+03	3.10E+02	4.31E+03	2.00E+03	2.00E+03	2.00E+03	0.63
07-maj-86	9.94E+02	2.67E+02	3.71E+03	2.18E+03	2.18E+03	2.18E+03	0.49
08-maj-86	8.73E+02	2.34E+02	3.25E+03				
09-maj-86	7.58E+02	2.04E+02	2.82E+03	6.00E+02	6.00E+02	6.00E+02	1.37
10-maj-86	6.47E+02	1.74E+02	2.41E+03	3.00E+02	3.00E+02	3.00E+02	2.35
11-maj-86	5.48E+02	1.47E+02	2.04E+03	6.00E+02	6.00E+02	6.00E+02	1.00
12-maj-86	4.63E+02	1.24E+02	1.72E+03	4.00E+02	4.00E+02	4.00E+02	1.26
13-maj-86	3.91E+02	1.05E+02	1.46E+03	6.25E+02	6.25E+02	6.25E+02	0.68
14-maj-86	3.29E+02	8.85E+01	1.23E+03				
15-maj-86	2.78E+02	7.48E+01	1.04E+03	5.00E+02	5.00E+02	5.00E+02	0.61
16-maj-86	2.35E+02	6.31E+01	8.75E+02				
17-maj-86	1.98E+02	5.32E+01	7.39E+02				
18-maj-86	1.68E+02	4.51E+01	6.24E+02				
19-maj-86	1.42E+02	3.81E+01	5.29E+02	1.03E+02	1.03E+02	1.03E+02	1.50
20-maj-86	1.20E+02	3.23E+01	4.48E+02	2.93E+02	2.93E+02	2.93E+02	0.45
21-maj-86	1.02E+02	2.73E+01	3.80E+02	4.18E+02	4.18E+02	4.18E+02	0.27
22-maj-86	8.64E+01	2.32E+01	3.22E+02				
23-maj-86	7.33E+01	1.97E+01	2.73E+02	1.43E+02	1.43E+02	1.43E+02	0.56
24-maj-86	6.22E+01	1.67E+01	2.32E+02	7.50E+01	7.50E+01	7.50E+01	0.90
25-maj-86	5.28E+01	1.42E+01	1.97E+02	8.30E+01	8.30E+01	8.30E+01	0.69
26-maj-86	4.49E+01	1.21E+01	1.67E+02				
27-maj-86	3.82E+01	1.03E+01	1.42E+02				
28-maj-86	3.26E+01	8.75E+00	1.21E+02				
29-maj-86	2.78E+01	7.47E+00	1.03E+02				
30-maj-86	2.37E+01	6.37E+00	8.84E+01	2.30E+01	2.30E+01	2.30E+01	1.12
31-maj-86	2.03E+01	5.44E+00	7.56E+01				
01-cze-86	1.74E+01	4.67E+00	6.47E+01				
02-cze-86	1.49E+01	4.01E+00	5.55E+01	1.80E+01	1.80E+01	1.80E+01	0.89
03-cze-86	1.28E+01	3.45E+00	4.77E+01				
Wsk	aźnik nieza	wodności RI	za okres 29 l	wiecień-4 cze	rwiecj 1986	wynosił 2.1	
		Współcz	zynnik korela	cji log-norm (0.73		
		Współczyni	niki prostej L	n(P)=0.9*ln(C)	0)+0.47		

Tabela 5.4.4—2. Stężenia ¹³¹I w mleku krów- wartości przewidywane i pomiarowe (woj. Ostrołęckie)

Rysunek 5.4.4—2: Porównanie przewidywanych przez model wartości stężenia ¹³¹ I w mleku z wartościami pomiarowymi (woj. Ostrołęckie)

5.4.5 Skażenie mleka owiec

Porównano przewidywane i zmierzone stężenie ¹³¹I w mleku owiec w celu sprawdzenie wiarygodności funkcji retencji dla mleka owiec oraz zbadanie, czy duże opady atmosferyczne na południu Polski miały wpływ na wielkość skażenia mleka jodem ¹³¹I. Pomiary mleka owiec wykonano w czterech miejscowościach na południu Polski: Nowy Targ, Nowy Sącz, Gorlice, Zakopane.

Przewidywane i średnie dzienne wartości mierzonych stężenia ¹³¹I w mleku owiec w okresie 28 kwietnia÷8 czerwca 1986 przedstawia Tabela 5.4.5—1 oraz Rysunek 5.4.5—1. Wartości te otrzymano na podstawie wyliczonych wartości stężenia ¹³¹I w trawie (Rozdział 5.4.3) przy założeniu dziennego spożycia przez owce 4.5 kg trawy. W okresie maj-październik, ze względu na intensywny wypas owiec, trawa pastwiskowa jest głównym źródłem skażenia mleka ¹³¹I. Przyjęty ekwiwalent funkcji retencji jodu dla owczego mleka wynosił:

współczynnik równowagi:	$400 \times 10^{-3} [d L^{-1}]$
udział składowej szybkiej:	99%
okres połowicznego zaniku składowej szybkiej:	0.75 dni
	- · · ·

okres połowicznego zaniku składowej wolnej: 20 dni

Przyjęty współczynnik równowagi był nieco mniejszy niż wartości podawane w literaturze: średnia 500×10^{-3} d L⁻¹ *[27]*, oraz 490×10⁻³ d L⁻¹ z zakresem (80÷940)×10⁻³ d L⁻¹ *[21]*. Należy podkreślić że współczynnik ten jest 200 razy większy niż dla krów, co nawet przy dziesięciokrotnie mniejszym wchłonięciu ¹³¹I prze owcę (10 razy mniejsza ilość zjadanej trawy) daje ponad 10 krotne większe stężenie ¹³¹I w mleku.

Średnie dzienne stężenie jodu ¹³¹I w mleku pochodzą z okolic Nowego Targu i Zakopanego. Wskaźnik niezawodności RI wynosi 2.59, wskazując że około 68% wyników pomiarów zawiera się w zakresie wartości przewidywanych (2.6×P;1/2.6×P). Współczynnik korelacji transformacji log-normalnej wartości przewidywanych i średnich wartości pomiarowych wynosi 0.96 , natomiast współczynnik liniowy logarytmów wynosi 0.97 co oznacza że okres połowicznego zaniku wartości pomiarowych jest bliski okresowi połowicznego zaniku wartości przewidywanych. Dla pomiarów wynosił on 5.1 dni z 95% przedziałem ufności równym 4.8÷5.5 dni. Wartości przewidywane były 2.5 razy większe od obserwowanych. Przyczyną może być mniejsza retencja ¹³¹I na trawie na zboczach gór, lub mniejszy współczynnik przechodzenia ¹³¹I do mleka. Niższy współczynnik przejścia ¹³¹I z trawy do mleka może być spowodowany niedoborem jodu w karmie owiec. Porównanie stężenia ¹³¹I w mleku owiec nie potwierdza hipotezy, że w rejonach zwiększonych opadów deszczu należy się spodziewać zwiększonych stężeń ¹³¹I w mleku.

	Wartości	przewidywa	ne [Bq L ⁻¹]	Wartości	pomiarowe	[Bq L ⁻¹]	D/O
	á 1 :	95% przed	ział ufności	á 1 ·	95% przed	ział ufności	\dot{P}/O
Data	Srednie	śrec	Iniej	Srednie	śrec	Iniej	Srednie
	dzienne	Kres dolny	Kres górny	dzienne	Kres dolny	Kres górny	dzienne
3-mai-1986	2.68E+04	7 66E+03	9 38E+04	2 39E+04	2 39E+04	2 39E+04	1.12
4-mai-1986	3 31E+04	946E+03	1 16E+05	2 78E+04	2.78E+04	2 78E+04	1 19
5-mai-1986	3.23E+04	9.23E+03	1.13E+05	1.51E+04	1.34E+04	1.70E+04	2.14
6-mai-1986	2.91E+04	8.31E+03	1.02E+05	1.09E+04	2.87E+03	4.11E+04	2.68
7-mai-1986	2.64E+04	7.54E+03	9.24E+04	1.09E+04	8.03E+03	1.47E+04	2.43
8-maj-1986	2.39E+04	6.83E+03	8.37E+04	7.58E+03	7.58E+03	7.58E+03	3.15
9-maj-1986	2.09E+04	5.97E+03	7.32E+04	7.73E+03	6.66E+03	8.97E+03	2.70
10-maj-1986	1.81E+04	5.17E+03	6.34E+04	6.17E+03	6.17E+03	6.17E+03	2.94
11-maj-1986	1.56E+04	4.46E+03	5.46E+04	8.71E+03	8.60E+03	8.81E+03	1.79
12-maj-1986	1.34E+04	3.83E+03	4.69E+04	4.61E+03	3.95E+03	5.40E+03	2.90
13-maj-1986	1.15E+04	3.29E+03	4.03E+04	5.23E+03	4.14E+03	6.62E+03	2.20
14-maj-1986	9.85E+03	2.81E+03	3.45E+04	5.06E+03	3.61E+03	7.09E+03	1.95
15-maj-1986	8.46E+03	2.42E+03	2.96E+04	3.93E+03	3.09E+03	4.99E+03	2.15
16-maj-1986	7.28E+03	2.08E+03	2.55E+04	3.36E+03	2.65E+03	4.25E+03	2.17
17-maj-1986	6.26E+03	1.79E+03	2.19E+04	1.74E+03	1.74E+03	1.74E+03	3.59
18-maj-1986	5.39E+03	1.54E+03	1.89E+04	2.40E+03	2.40E+03	2.40E+03	2.25
19-maj-1986	4.65E+03	1.33E+03	1.63E+04	1.03E+03	1.03E+03	1.03E+03	4.53
20-maj-1986	4.01E+03	1.15E+03	1.40E+04	1.14E+03	1.14E+03	1.14E+03	3.51
22-maj-1986	2.99E+03	8.54E+02	1.05E+04	1.06E+03	1.03E+03	1.09E+03	2.83
24-maj-1986	2.24E+03	6.40E+02	7.84E+03	6.02E+02	6.02E+02	6.02E+02	3.72
26-maj-1986	1.68E+03	4.80E+02	5.88E+03	5.18E+02	4.29E+02	6.24E+02	3.25
27-maj-1986	1.45E+03	4.14E+02	5.08E+03	1.43E+03	4.42E+02	4.63E+03	1.01
28-maj-1986	1.26E+03	3.60E+02	4.41E+03	5.16E+02	3.40E+02	7.83E+02	2.44
31-maj-1986	8.30E+02	2.37E+02	2.91E+03	3.08E+02	3.08E+02	3.08E+02	2.70
2-czer-1986	6.31E+02	1.80E+02	2.21E+03	2.01E+02	1.45E+02	2.79E+02	3.14
3-czer-1986	5.50E+02	1.57E+02	1.93E+03	1.30E+02	1.06E+02	1.60E+02	4.23
4-czer-1986	4.81E+02	1.37E+02	1.68E+03	2.39E+02	8.86E+01	6.44E+02	2.01
5-czer-1986	4.21E+02	1.20E+02	1.47E+03	1.45E+02	1.36E+02	1.55E+02	2.90
6-czer-1986	3.69E+02	1.05E+02	1.29E+03	1.28E+02	1.28E+02	1.28E+02	2.88
9-czer-1986	2.50E+02	7.14E+01	8.75E+02	1.24E+02	8.32E+01	1.84E+02	2.02
10-czer-1986	2.19E+02	6.26E+01	7.67E+02	9.13E+01	6.86E+01	1.21E+02	2.40
11-czer-1986	1.93E+02	5.51E+01	6.76E+02	6.11E+01	3.77E+01	9.91E+01	3.16
12-czer-1986	1.70E+02	4.86E+01	5.95E+02	6.96E+01	5.38E+01	8.99E+01	2.44
13-czer-1986	1.50E+02	4.29E+01	5.25E+02	2.34E+02	2.34E+02	2.34E+02	0.64
16-czer-1986	1.04E+02	2.97E+01	3.64E+02	2.75E+01	2.75E+01	2.75E+01	3.78
17-czer-1986	9.21E+01	2.63E+01	3.22E+02	7.42E+01	7.42E+01	7.42E+01	1.24
18-czer-1986	8.17E+01	2.33E+01	2.86E+02	2.92E+01	2.92E+01	2.92E+01	2.80
26-czer-1986	3.25E+01	9.29E+00	1.14E+02	2.08E+01	2.08E+01	2.08E+01	1.56
Wsk	aźnik nieza	wodności RI	za okres 29 k	wiecień-4 cze	rwiec 1986 w	vynosił 2.59	
		Współcz	zynnik korela	icji log-norm ().96	,	
		Współczynn	iki prostej Li	n(P)=0.97*ln(0)	D)+1.06		

Tabela 5.4.5—1. Stężenia ¹³¹I w mleku owiec - wartości przewidywane i pomiarowe.

Rysunek 5.4.5—1: Porównanie przewidywanych przez model wartości stężenia ¹³¹ I w mleku owiec z wartościami pomiarowymi.

5.4.6 Określenie redukcji aktywności I-131 w tarczycy w zależności od czasu blokady

W opracowaniu posłużono się pięcio - przedziałowym modelem metabolizmu jodu zaproponowanym przez J.R.Johnsona [50]. Model ten pozwala na ocenę wpływu zapobiegawczej dawki jodu stabilnego i dziennej podaży jodu stabilnego na wielkość pochłoniętej dawki, uwzględnia również parametry metabolizmu jodu dla dzieci i niemowląt, co jest szczególnie istotne przy ocenach dawek populacyjnych [6].

Schemat modelu oraz parametry użyte do obliczeń, jak również omówienie i dyskusja kolejnych przedziałów tego modelu, oraz jego matematyczny opis przedstawiono w Rozdziale 1.7 niniejszej pracy.

Obliczenia przeprowadzono na za pomoca własnego programu CALCRES, stanowiacego integralną część modelu CLRP. Program ten wyznacza przebiegi czasowe aktywności radioaktywnego jodu w poszczególnych przedziałach modelu metabolizmu, uwzględniając dowolnie zadany rozkład wchłonięć oraz czas i ilość jodu zastosowanego do blokady tarczycy. Oblicza również scałkowane stężenie ¹³¹I w tarczycy oraz dawki H₅₀ na tarczycę (committed dose equivalent). Wielkość kroku wynosiła 0.04 dnia (1 godzina), co zapewniało dokładność obliczeń równa około 5%. Rysunek 5.4.6—1 obrazuje wyliczenia teoretyczne redukcji dawki H₅₀ w wyniku podania jodu stabilnego w ilości 60 mg w różnych wariantach czasowych. Z wartości podanych na krzywej można odczytać, że jod stabilny podany w 12 godzin po jednorazowym wchłonieciu jodu promieniotwórczego redukuje dawkę o 29% a podany 24 godziny po jednorazowym wchłonięciu redukuje dawkę tylko o 7.2%. Jod podany na 72 godziny przed wchłonięciem jodu promieniotwórczego redukuje jeszcze dawkę o 39%. Za pomocą programu przeprowadzono symulację komputerowa wpływu profilaktycznej dawki jodu stabilnego na poziom 131 w tarczycy ludności Polski. Inhalacyjne wchłonięcia 131 I oceniono na podstawie średnich dziennych stężenia 131 I w powietrzu (Tabela 5.4.1—1), uwzględniając frakcję aerozolową i frakcję jodu elementarnego oraz przyjęto współczynnik filtracji budynku równy 0.6, co przy czasie przebywania w budynku 18 godzin daje współczynnik redukcji wchłonięcia ¹³¹I około 0.7. W obliczeniach uwzględniono prędkości oddychania w różnych grup wiekowych. Wchłonięcia drogą pokarmową określono na podstawie przewidywanych stężeń w mleku (Tabela 5.4.4-1) przyjmując dzienne spożycie charakterystyczne dla danej grupy wiekowej.

Tabela 5.4.6—1, Tabela 5.4.6—2, Tabela 5.4.6—3 przedstawiają wyniki obliczeń modelowych scałkowanej aktywności ¹³¹I oraz dawki na tarczycę H₅₀ dla trzech grup wiekowych (dziecka 5

lat, dziecka 10 lat oraz człowieka standardowego) w trzech wariantach wchłonięć w zależności od czasu i ilości podanego jodu stabilnego:

w wyniku wchłonięć skażonego powietrza

w wyniku spożywania skażonych produktów

łącznie w wyniku wchłonięć skażonego powietrza i spożywania skażonych produktów Przebiegi aktywności ¹³¹I w tarczycy dla standardowego mężczyzny przedstawia: Rysunek 5.4.6—2, Rysunek 5.4.6—3, Rysunek 5.4.6—4; dla dziecka 10 lat przedstawia: Rysunek 5.4.6— 5, Rysunek 5.4.6—6, Rysunek 5.4.6—7 oraz dla dziecka 5 letniego: Rysunek 5.4.6—8, Rysunek 5.4.6—9, Rysunek 5.4.6—10.

Analizując przedstawione przebiegi można stwierdzić, że nie ma istotnych różnic w dynamice wchłonięć drogą oddechową, jak również w wielkości redukcji dawki dla poszczególnych grup wiekowych. Scałkowane aktywności ¹³¹I w tarczycy między dorosłym, a pięciolatkiem różnią się o około 15 %, co wynika z faktu, że zwiększone wchłonięcie ¹³¹I jest rekompensowane przez szybszy metabolizm. Aktywność zakumulowana w tarczycy a zatem dawka obciążająca H₅₀ w wyniku wchłonięć drogą oddechową zostaje zredukowana o około 80% (blisko pięciokrotnie) w przypadku blokady w dniu 28.04.86 godzina 12 , o około 62% w przypadku blokady 29.04.86. godzina 12, o około 28.5% w przypadku blokady 30.04.86 godzina 12 oraz o około 5% w przypadku blokady 1.05.86 godzina 12 w stosunku do wariantu braku blokady i odzwierciedla skuteczność blokady przed wchłonięciem skażonego powietrza w dniach 29, 30 kwietnia 1986. Dla wariantu wchłonięć drogą pokarmową najbardziej efektywna okazuje się blokada w dniu 1 maja 1986 (30%), gdyż osłania ona przed maksymalnym pikiem wchłonięć ¹³¹I, który nastąpił w dniach 1-2 maja 1986.

Z punktu widzenia oceny skuteczności blokady najbardziej istotne jest porównanie łącznej redukcji dawki po wchłonięciu drogą oddechową i drogą pokarmową, gdyż odzwierciedla to sytuację rzeczywistą. W tym przypadku, wskutek przesunięć czasowych między pikiem skażeń powietrza, a mleka jednorazowa blokada 28-kwietnia, 29-kwietnia czy 30 kwietnia 1986r daje przybliżone wartości redukcji dawki około 35%. Należy podkreślić, że w przypadku innego rozkładu skażeń produktów pokarmowych ¹³¹I, wartości całkowitego współczynnika redukcji będą się zmieniać. Przyjmując, że większości dzieci podano płyn Lugola 30 kwietnia, redukcja dawki będzie mniejsza dla rejonów, w których skażenia wystąpiły później.

Rysunek 5.4.6—1: Redukcja dawki w tarczycy od ¹³¹I w funkcji czasu podania 60 mg dawki jodu stabilnego przy jednorazowym wchłonięciu.

Rysunek 5.4.6—3: Aktywność ¹³¹I w tarczycy człowieka standardowego przy wchlonięciach drogą pokarmową i podaniu jodu stabilnego w różnych terminach.

Rysunek 5.4.6—4: Aktywność ¹³¹I w tarczycy człowieka standardowego przy wchlonięciach drogą oddechową i pokarmową i podaniu jodu stabilnego w różnych terminach.

Rysunek 5.4.6—5: Aktywność ¹³¹I w tarczycy dziecka w wieku 10 lat przy wchlonięciach drogą oddechową i podaniu jodu stabilnego w różnych terminach.

Rysunek 5.4.6—6: Aktywność ¹³¹I w tarczycy dziecka w wieku 10 lat przy wchlonięciach drogą pokarmową i podaniu jodu stabilnego w różnych terminach.

terminach.

Rysunek 5.4.6-8: Aktywność ¹³¹I w tarczycy dziecka w wieku 5 lat przy wchlonięciach drogą oddechową i podaniu jodu stabilnego w różnych terminach.

Rysunek 5.4.6—9: Aktywność ¹³¹I w tarczycy dziecka w wieku 5 lat przy wchlonięciach drogą pokarmową i podaniu jodu stabilnego w różnych terminach.

Rysunek 5.4.6—10: Aktywność ¹³¹I w tarczycy dziecka w wieku 5 lat przy wchlonięciach drogą oddechową i pokarmową i podaniu jodu stabilnego w różnych terminach.

	Droga oddechowa			Droga	Droga pokarmowa			Droga oddechowa i pokarmowa			Procent dawki całkowitej [%]	
Data blokady	Scałkowana aktywność ¹³¹ I	H_{50} (mSv)	Redukcja	Scałkowana aktywność ¹³¹ I	H_{50}	Redukcja	Scałkowana aktywność ¹³¹ I	H ₅₀	Redukcja	Droga	Droga	
	w tarczycy [Bq×h]	[III3v]	[/0]	w tarczycy [Bq×h]	[IIISV]	[/0]	w tarczycy [Bq×h]	[III3v]	[/0]	oddeenowa	pokarinowa	
28-kwiecień-86 12:00	2.1E+04	0.55	79	5.2E+05	13.70	16	5.4E+05	14.25	25	4	96	
29-kwiecień-86 12:00	3.7E+04	0.97	62	4.7E+05	12.40	24	5.1E+05	13.37	30	7	93	
30-kwiecień-86 12:00	7.1E+04	1.84	28	4.4E+05	11.50	30	5.1E+05	13.34	30	14	86	
1-maj-86 12:00	9.3E+04	2.43	5	4.3E+05	11.30	31	5.3E+05	13.73	28	18	82	
2-maj-86 12:00	9.6E+04	2.52	2	4.5E+05	11.70	29	5.5E+05	14.22	25	18	82	
5-maj-86 12:00	9.3E+04	2.42	6	5.1E+05	13.30	19	6.0E+05	15.72	17	15	85	
NL	9.8E+04	2.57	0	6.3E+05	16.40	0	7.3E+05	18.97	0	14	86	

Tabela 5.4.6—1. Redukcja dawki dla dziecka 5 lat w zależności od czasu blokady – podana ilość jodu stabilnego 30 mg.

① Równoważnik dawki obciążającej w tarczycy

	Droga oddechowa			Droga	Droga pokarmowa			Droga oddechowa i pokarmowa			Procent dawki całkowitej [%]	
Data blokady	Scałkowana aktywność ¹³¹ I w tarczycy [Bq×h]	H ₅₀ [mSv]	Redukcja [%]	Scałkowana aktywność ¹³¹ I w tarczycy [Bq×h]	H ₅₀ [mSv]	Redukcja [%]	Scałkowana aktywność ¹³¹ I w tarczycy [Bq×h]	H ₅₀ [mSv]	Redukcja [%]	Droga oddechowa	Droga pokarmowa	
28-kwiecień-86 12:00	3.4E+04	0.51	79	5.9E+05	8.79	17	6.2E+05	9.30	29	5	95	
29-kwiecień-86 12:00	6.1E+04	0.91	63	5.3E+05	7.93	25	5.9E+05	8.84	32	10	90	
30-kwiecień-86 12:00	1.2E+05	1.74	28	4.9E+05	7.35	31	6.1E+05	9.09	30	19	81	
1-maj-86 12:00	1.5E+05	2.30	5	4.9E+05	7.26	32	6.4E+05	9.56	27	24	76	
2-maj-86 12:00	1.6E+05	2.38	2	5.0E+05	7.52	29	6.6E+05	9.90	24	24	76	
5-maj-86 12:00	1.5E+05	2.28	6	5.7E+05	8.52	20	7.2E+05	10.80	17	21	79	
NL	1.6E+05	2.42	0	7.1E+05	10.60	0	8.7E+05	13.02	0	19	81	

Tabela 5.4.6—2. Redukcja dawki dla dziecka 10 lat w zależności od czasu blokady – podana ilość jodu stabilnego 60 mg.

	Droga oddechowa			Droga	Droga pokarmowa			Droga oddechowa i pokarmowa			Procent dawki całkowitej [%]	
Dete blokedy	Scałkowana			Scałkowana			Scałkowana					
Data blokady	aktywność ¹³¹ I	H_{50}	Redukcja	aktywność ¹³¹ I	H_{50}	Redukcja	aktywność ¹³¹ I	H_{50}	Redukcja	Droga	Droga	
	w tarczycy	[mSv]	[%]	w tarczycy	[mSv]	[%]	w tarczycy	[mSv]	[%]	oddechowa	pokarmowa	
	[Bq×h]			[Bq×h]			[Bq×h]					
28-kwiecień-86 0:00	7.5E+04	0.44	72	4.9E+05	2.87	11	5.6E+05	3.31	31	13	87	
28-kwiecień-86 12:00	6.5E+04	0.39	76	4.7E+05	2.76	14	5.3E+05	3.15	35	12	88	
29-kwiecień-86 12:00	1.0E+05	0.62	62	4.2E+05	2.51	22	5.3E+05	3.13	35	20	80	
30-kwiecień-86 12:00	2.0E+05	1.16	28	3.9E+05	2.32	28	5.9E+05	3.48	28	33	67	
1-maj-86 12:00	2.6E+05	1.53	5	3.9E+05	2.28	29	6.4E+05	3.81	21	40	60	
2-maj-86 12:00	2.7E+05	1.58	2	4.0E+05	2.35	27	6.6E+05	3.93	18	40	60	
5-maj-86 12:00	2.6E+05	1.53	5	4.4E+05	2.63	18	7.0E+05	4.16	14	37	63	
NL	2.7E+05	1.61	0	5.4E+05	3.21	0	8.2E+05	4.82	0	33	67	

Tabela 5.4.6—3. Redukcja dawki dla człowieka standardowego w zależności od czasu blokady – zalecana ilość jodu stabilnego 60 mg.

5.4.7 Jod-131 w tarczycy

Weryfikacje przewidywań modelu aktywności ¹³¹I w tarczycy przeprowadzono na bazie pomiarów jodu w tarczycy wykonanych w CLOR i prowadzonych w Instytucie Energii Atomowej [150] oraz [152]. Tabela 5.4.7-1 przedstawia rozkład wykonanych pomiarów według grupy wiekowej i rejonu Polski. W sumie przeanalizowano 2020 pomiarów tarczycy. Największą liczbę pomiarów wykonano dla województwa warszawskiego 1405 w tym 1143 pomiary osób dorosłych, 42 pomiary dzieci lat 15, 126 pomiarów dzieci lat 10, 91 pomiarów dzieci lat 5. 757 pomiarów u osób dorosłych wykonano w Instytucie Energii Atomowej [152]. Informacje o dniu zastosowania blokady uzyskano z wywiadu. Blokadę zastosowało 917 osób. W grupie dzieci 5, 10, 15 lat ponad 95% zarejestrowanych osób otrzymało płyn Lugola 29-30 kwietnia. W grupie dorosłych 26% otrzymało płyn Lugola 29-30 kwietnia, 3% w pierwszych dniach maja, a 71% nie zastosowało blokady. Biorąc pod uwagę reprezentatywność pomiarów dla danego obszaru Polski należy stwierdzić, że jedynie dla województwa warszawskiego (1405 pomiarów), Białostockiego (195 pomiarów) oraz Ostrołęckiego (133 pomiary) możliwe jest porównanie przewidywań modelu z wartościami pomiarowymi. Ponieważ przewidywania modelu oparte są na hipotetycznym obszarze o średnim skażeniu gruntu równym 70 kBq/m² w zakresie 40÷150 kBq/m², przedstawione w dalszej części pracy aktywności ¹³¹I w tarczycy sa liczone dla takiego obszaru. Aktywności ¹³¹I w tarczycach zmierzone w województwie białostockim nie odbiegały od średnich aktywności w województwie warszawskim. Kres górny 95% przedziału ufności wartości przewidywanych obrazuje możliwy rozrzut stężeń ¹³¹I w tarczycy, wynikający z rozrzutu skażeń mleka, oraz różnic w diecie dla danej grupy wiekowej. Otrzymany współczynnik wynosi około 2×P. Kres dolny wartości przewidywanych obrazuje aktywność ¹³¹I w tarczycy liczona przy założeniu że jedyna droga skażeń wewnetrznych jest wdychanie skażonego powietrza. Założono, że średni czas przebywania poza budynkiem wynosi równy 6 godzin oraz współczynnik filtracji budynku 0.6. Daje to całkowity współczynnik redukcji wchłonięć drogą oddechową równy:

$$(1 \times 6_{\text{godzin}}^{\text{na zewnątrz pomieszczenia}} + 18_{\text{godzin}}^{\text{w pomieszczeniu}} \times 0.6)/24_{\text{godziny}}) = 0.7.$$

Obrazuje to sytuację, gdy w 100 procentach działa zakaz konsumpcji świeżego mleka, przetworów mlecznych oraz innych skażonych produktów żywnościowych.

Na poziom ¹³¹I w tarczycy decydujący wpływ miała konsumpcja skażonego mleka oraz czas przebywania na zewnątrz pomieszczeń. Zmienność tych warunków powoduje duży rozrzut wyników nie dający możliwości uwidocznienia efektu blokady.

Wskaźnik wiarygodności RI w przypadku porównania przewidywań modelu z wartościami pomiarów aktywności ¹³¹I w tarczycy wzrastał od wartości 2 dla mieszkańców Warszawy do wartości bliskiej 3 dla pomiarów obejmujących całą Polskę, gdy włączono do zbioru wartości mierzone w okolicach Ostrołęki. Przedstawia to Tabela 5.4.7-2 oraz Tabela 5.4.7-3 dla dorosłych, którzy nie stosowali blokady, Tabela 5.4.7—5, Tabela 5.4.7—6 dla osób dorosłych którzy brali blokującą dawkę stabilnego jodu w dniach 29-30 kwietnia 1986, Tabela 5.4.7-8, Tabela 5.4.7—9 dla dzieci w wieku 5 lat oraz Tabela 5.4.7—10, Tabela 5.4.7—11 dla dzieci 10 lat. Współczynnik korelacji wartości przewidywanych z wartościami pomiarowymi był w większości przypadków niski 0.6-0.2. Powodem tego był duży rozrzut wartości pomiarowych, widoczny nawet dla rejonu o lepszej statystyce pomiarów jakim była Warszawa. Kres górny 95% przedziału ufności przewidywań modelu 2×P nie pokrywał większości kresów górnych 95% przedziału ufności średniej wartości pomiarowych dla Warszawy. Uwidacznia to Rysunek 5.4.7–2, Rysunek 5.4.7–5 dla grupy wiekowej dorosłych, Rysunek 5.4.7–7 dla grupy wiekowej dzieci (lat 5), Rysunek 5.4.7-9 dla grupy wiekowej dzieci (lat 10). Kryterium to spełniał już współczynnik 3×P - oznacza to, że kres górny 95% przedziału ufności średnich pomiarowych dla wszystkich pomiarów nie przekraczał trzykrotnej wartości przewidywanej w danym dniu. Dla zbioru połącznych pomiarów z Warszawy z pomiarami z rejonu Ostrołęki (o wysokich mierzonych aktywnościach I-131 w tarczycy) otrzymujemy kres górny 95% przedziału ufności przewidywań pokrywający kres górny 95 % przedziału ufności i średniej wartości pomiarowych równy 10×P. Pokazuje to Rysunek 5.4.7—1, Rysunek 5.4.7—3, Rysunek 5.4.7-4, - dla grupu osób dorosłych, Rysunek 5.4.7-6, Rysunek 5.4.7-7 dla grupy wiekowej dzieci 5 lat oraz Rysunek 5.4.7-8 dla grupy wiekowej dzieci 10 lat . Nasuwa to wniosek, że "bezpieczny" współczynnik określający kres górny 95% przedziału ufności przewidywanych aktywności ¹³¹I w tarczycach powinien być 10× wartość przewidywana. Dotyczy to przypadku przewidywania dla całego obszaru Polski, przy braku szczegółowych danych opisujących poszczególne regiony radioekologiczne. Chociaż badania przeprowadzone w Polsce po Czarnobylu wskazywały na istnienie dużych obszarów niedoboru jodu stabilnego (tzw. obszarów endemicznych) [46], duży rozrzut danych pomiarowych nie pozwalał na wykazanie wpływu endemii na wzrost aktywności ¹³¹I w tarczycy.
WOJEWÓDZIWO Grupa wickowa lata jodem stabilnym lig86 i jodem stabilnym kwiccień Razem Bialastockie 5 1 28 29 lub 30 Bez blokady Razem Bialastockie 5 1986 1986 1986 1986 1986 1986 1986 1986 1986 1986 1986 1986 1986 1986 1986 1986 10 10 10 10 10 10 10 10 10 10 10 10 11 <th></th> <th></th> <th>Data z</th> <th>rczycy</th> <th></th>			Data z	rczycy			
WOJEWÓDZTWO Grupa wickowa lata I maj 1986 i później 28 kwiecień 29 lub 30 kwiecień Bez blokady Razem Bialastockie 1 - 1986 3 - 3 Bialastockie 1 - 198 3 - 3 10 - - 60 - 60 - 60 11 - - 10 - 42 - 43 Głańskie 1 - 11 1 1 1 Głańskie 5 - - 12 1 13 Głańskie 50 - 13 122 153 - Katowickie 20 - - 1 1 1 - Katowickie 20 - - 1 - 1 - 1 Katowickie 20 - - 1 - 1 - 1 Katowickie 50		C		jodem st	tabilnym		
Wiekowa Jata 1986 1 kwiecień kwiecień Bez Bialostockie 1 1986 1 1986 1 1986 1 Bialostockie 5 19 3 3 10 60 60 60 15 70 70 70 Głańskie 1 194 195 Ciechanowskie 20 1 42 43 Głańskie 1 1 1 1 1 10 25 25 25 25 15 13 122 153 13 122 153 Katowickie 10 1 1 2 1 3 Katowickie 20 1 1 1 2 1 3 Kieleckie 10 2 1 3 3 3 3 Katowickie 20 1 2 1 4 1 Labekskie 10 2 3 <td>WOJEWÓDZTWO</td> <td>Grupa</td> <td>1 mai</td> <td>28</td> <td>29 lub 30</td> <td>_</td> <td>Razem</td>	WOJEWÓDZTWO	Grupa	1 mai	28	29 lub 30	_	Razem
Disk Disk Disk Disk Disk Bialostockie 1 1986 3 3 3 10 60 60 60 60 15 70 70 70 20 1 42 43 Bialostockie 20 1 10 11 Gdańskie 1 1 144 195 Ciechanowskie 20 12 1 13 Gdańskie 1 1 1 1 10 25 25 13 123 205 Katowickie 10 1 1 1 1 Katowickie 20 1 1 1 1 Katowickie 20 1 1 1 1 Lonzviskie 20 1 3 3 3 Katowickie 20 1 2 2 2 Lonzviskie 5 1 1		wiekowa lata	1986 i	kwiecień	kwiecień	Bez	
Bialostockie 1 1700 1700 1700 3 3 Bialostockie 5 19 19 19 19 Bialostockie 20 1 42 70 70 70 Cierchanowskie 20 1 42 43 194 195 Cierchanowskie 20 1 14 1 1 1 Gdańskie 1 1 13 12 13 123 Gdańskie 10 25 13 123 205 14 1 1 1 Katowickie 20 2 1 1 1 1 1 1 1 Kieleckie 20 2 2 2 2 2 1			nóźniej	1086	1086	blokady	
Brainstockie 1 4 4 10 60 60 60 115 70 70 70 Rialostockie - Suma 1 49 195 1 Gdańskie 20 1 49 10 1 Gdańskie 1 1 1 1 1 Gdańskie 10 125 25 25 10 25 25 25 115 13 120 13 123 133 Gdańskie - Suma 20 1 1 1 1 Katowickie - Suma 20 1 1 1 1 Katowickie - Suma 20 1 1 1 1 1 Lubelskie 10 1 1 1 1 1 1 Lubelskie 10 1 1 1 1 1 Lubelskie 10 1 2 1 1	D'1 / 1'	1	poziiiej	1900	1980		2
In In <thin< th=""> In In In<</thin<>	Białostockie	5			10		10
15 70 70 70 Bialostockie - Suma 1 40 43 Giańskie 1 194 195 Ciechanowskie 20 1 1 1 Gdańskie 1 1 1 1 10 25 12 1 15 13 13 13 20 31 122 133 Gdańskie - Suma 82 123 20 Katowickie - Suma 20 1 1 1 Kieleckie - Suma 3 3 3 3 3 Kieleckie - Suma 3 3 3 3 3 Kieleckie - Suma 3 3 3 3 3 Lubelskie 20 1 2 1 4 Lomzvińskie - Suma 1 2 3 4 Olsztwiskie - Suma 1 2 3 4 Olsztwiskie 10 2 <		10			60		60
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		15			70		70
Białostockie - Suma 1 194 195 Ciechanowskie 20 1 1 1 Gdáńskie 1 1 1 1 10 25 25 25 15 13 13 13 Gdáńskie 20 31 122 153 Katowickie 20 1 1 27 Katowickie 20 1 1 1 Kieleckie 10 2 2 2 Kieleckie 20 1 1 1 Kieleckie 20 1 1 1 Lubelskie 20 1 1 1 I ubelskie 20 1 2 2 15 3 3 3 4 Olsztvńskie 5 30 1 31 I o 22 2 2 2 2 Olsztvńskie 5 1 2 3 <td></td> <td>20</td> <td>1</td> <td></td> <td>42</td> <td></td> <td>43</td>		20	1		42		43
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Białostockie -	Suma	1		194		195
Gidanskie 1 1 1 1 1 10 25 25 25 20 31 12 13 31 12 13 13 6dańskie - Suma 82 123 205 Katowickie - Suma 20 1 1 2 Katowickie - Suma 2 1 3 3 Kieleckie 10 1 1 1 Judelskie 20 2 2 2 Kieleckie - Suma 3 3 3 3 Kozalińskie 20 1 1 1 Judelskie 20 1 1 1 Judelskie 10 2 2 2 Olsztvńskie 10 2 3 4 Olsztvńskie 10 2 3 4 Olsztvńskie 1 2 3 4 Olsztvńskie 10 1 1 1<	Ciechanowskie	20				1	1
10 12 1 13 13 15 13 12 153 Gdańskie - Suma 82 123 205 Katowickie 10 1 1 1 Katowickie 10 1 1 1 Katowickie 10 1 1 1 Kieleckie 20 2 2 2 Kieleckie 20 2 1 1 Jubelskie 20 1 1 1 Lubelskie 20 1 1 1 Vanzwiskie 10 2 2 2 15 1 2 2 2 10 2 2 2 2 10 2 3 3 3 10 1 2 3 3 10 1 2 3 1	Gdańskie	5			12	1	12
15 13 13 13 Gdańskie - Suma 82 123 205 Katowickie 10 1 1 1 Katowickie - Suma 20 1 1 2 Katowickie - Suma 2 1 3 3 Kieleckie 10 1 1 1 Lubelskie 20 2 2 2 Kieleckie - Suma 3 3 3 3 Kozalińskie 20 1 1 1 Jubelskie 20 1 1 1 Lomżwiskie 5 1 1 1 Olsztwiskie 10 2 2 2 Olsztwiskie 20 1 2 2 2 Ostroleckie 5 30 1 31 13 Olsztwiskie 20 2 33 33 68 Ostroleckie 5 1 1 1 1		10			25		25
20 31 122 153 Katowickie 10 1 1 1 1 Katowickie 20 1 1 1 1 Katowickie 10 1 1 1 2 1 3 Kieleckie 10 1 1 1 1 1 1 Koszalińskie 20 1 1 1 1 1 1 1 Lubelskie 20 1 2		15			13		13
Gdańskie - Suma 82 123 205 Katowickie - Suma 20 1 1 2 Katowickie - Suma 2 1 3 3 Kieleckie - Suma 2 2 2 2 Kieleckie - Suma 3 3 3 3 Koszalińskie 20 1 1 1 1 Lubelskie 20 1 1 1 1 Lomżvńskie 5 1 1 1 1 Lomżvńskie 10 2 2 2 2 Joni 2 3 4 10 1 Olsztvńskie 10 2 2 2 2 Ostrołeckie 5 30 1 31 3 Ostrołeckie 5 10 10 10 10 Ostrołeckie 5 1 2 3 4 Ostrołeckie 5 1 2 2 <		20			31	122	153
Katowickie 10 1 1 1 2 Katowickie - Suma 0 1 1 2 1 3 Kieleckie 10 1 1 1 1 1 Kieleckie - Suma 3 3 3 3 3 3 Koszaliskie 20 1 1 1 1 1 1 Iubelskie 20 1 2 2 7 3 3 Olsztvńskie 10 2 1 4 10 10 10 10 Olsztvńskie 10 2 7 2 1 4 10	Gdańskie - S	Suma			82	123	205
Katowickie Suma 1 1 2 1 3 Kieleckie 10 1 1 1 1 Kieleckie 20 2 2 2 Kieleckie 20 1 1 1 Lubelskie 20 1 1 1 Lubelskie 20 1 2 2 Lomžvňskie 5 1 1 1 Lomžvňskie 10 2 1 4 Olsztváskie 200 1 2 2 Lomžvňskie 10 2 3 6 Olsztváskie 10 2 3 6 Ostroleckie 5 30 1 31 I0 22 33 6 7 Ostroleckie 5 10 10 10 Siedleckie 1 2 3 7 Proznářskie 20 2 3 7 S	Katowickie	10			1		1
Katowickie - Suma 2 1 3 Kieleckie - Suma 1 1 1 Rieleckie - Suma 3 3 3 Kozzalińskie 20 1 1 1 Iubelskie 20 1 1 1 Lomzvńskie 5 1 1 1 Armzvńskie 5 1 2 2 20 1 2 1 4 Olsztvńskie 10 2 2 2 Ostroleckie 1 2 3 4 Olsztvńskie - Suma 1 2 3 4 Ostroleckie 5 30 1 31 10 22 23 3 33 68 Ostroleckie 5 10 10 10 20 2 33 33 68 Ostroleckie 5 1 2 3 Poznańskie 20 8 2		2.0			1	1	2
Kuerskie 10 1 1 1 Koszalińskie 20 3 3 Koszalińskie 20 1 1 Lubelskie 20 1 1 Lomžvńskie 5 1 1 Lomžvńskie 10 2 2 15 3 3 20 1 2 1 Lomžvńskie 20 1 2 2 Olsztvńskie 20 1 2 3 4 Olsztvńskie 10 2 2 2 2 10 22 2 2 2 2 2 10 20 1 2 3 4 3 Piotrkowskie 20 1 2 3 10 10 11 1 1 1 1 1 1 Piotrkowskie 20 8 1 1 1 15	Katowickie -	Suma			2		1
Kieleckie - Suma 3 3 Koszalińskie 20 1 1 Iubelskie 20 1 1 Lubelskie 20 1 1 Lomžvńskie 5 1 1 Lomžvńskie 5 1 1 Lomžvńskie 5 1 2 Lomžvńskie 20 1 2 1 Lomžvńskie 20 1 2 1 Olsztvńskie 20 1 2 2 Ostrołeckie 1 2 3 4 Olsztvńskie - Suma 1 2 3 6 Ostrołeckie 5 30 1 31 Piotkowskie 20 2 97 34 133 Piotkie - Suma 2 97 34 133 Piotkie - Suma 2 2 2 2 Poznańskie 20 8 1 1 10	K IEIECKIE	20			2		2
Koszalińskie 20 1 1 Iubelskie 20 1 1 Lomżyńskie 5 1 1 10 2 2 20 1 2 2 20 1 2 1 4 4 20 1 2 20 1 2 2 2 0lsztyńskie 10 2 2 2 10 20 1 3 4 Olsztyńskie 10 2 2 2 110 22 2 2 2 110 22 2 2 2 111 10 10 10 10 111 1 1 1 1 Plockie - Suma 2 2 2 2 11 1 1 1 1 1 Plockie - Suma 2 8 10 1 1<	Kieleckie - S	Suma			3		3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Koszalińskie	20			1		1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Lubelskie	20			1		1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Łomżyńskie	5			1		1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		10			2		2
Lomžvňskie 20 1 2 1 4 Olsztvňskie 10 2 3 4 Olsztvňskie 20 1 2 3 4 Olsztvňskie 1 2 3 6 3 4 Ostroleckie 1 2 3 6 3 1 3 10 22 33 33 6 6 3 1 1 15 10 10 10 10 10 10 10 Ostroleckie 5 1 1 1 1 1 1 Plotkie 5 1 1 1 1 1 1 Plockie 5 1 2 3 3 6 8 Siedleckie 1 1 1 1 1 1 1 Siedleckie 5 1 2 3 3 3 3 3		15	1		3	1	3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	L anti-séalsia	20	1			1	4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u> </u>				2		2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	UISZIVIISKIĘ	20	1			3	<u> </u>
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Olsztvńskie -	Suma	1		2	3	6
5 30 1 31 10 22 22 15 10 10 20 2 33 33 68 Ostroleckie - Suma 2 97 34 133 Piotrkowskie 20 1 2 3 Plockie 5 1 1 1 Plockie 5 1 2 2 Poznańskie 20 8 2 2 Poznańskie 20 8 8 8 Siedleckie 1 1 1 2 20 4 4 4 Skierniewickie 5 1 1 1 Sluwskie 5 4 4 4 10 3 3 3 3 3 15 1 7 4 12 Suwalskie 5 1 1 1 Suwalskie 20 1	Ostrołeckie	1			2		2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		5			30	1	31
15 10 10 10 20 2 33 33 68 Ostroleckie - Suma 2 97 34 133 Piotrkowskie 20 1 2 3 Plockie 5 1 1 1 Plockie 5 1 1 1 Plockie 20 8 2 2 Poznańskie 20 8 1 1 Siedleckie 5 1 2 3 10 1 1 2 3 10 1 1 2 3 10 1 1 1 1 Skierniewickie 5 1 1 1 Sluwalskie 20 1 1 1 Suwalskie 20 1 7 4 12 Suwalskie 1 1 1 1 1 Suwalskie 1 1		10			22		22
Ostroleckie - Suma 2 93 33 35 108 Piotrkowskie 20 1 2 3 1		20	2		10	22	68
Piotrkowskie 20 1 2 3 Plockie 5 1 1 1 Plockie 5 1 1 1 Plockie 15 1 1 1 Poznańskie 20 8 2 2 Poznańskie 10 1 1 1 1 10 1 1 2 3 3 20 4 4 4 4 Skietniewickie 5 1 1 1 Suwalskie 5 4 4 4 10 3 3 3 3 15 1 1 1 2 20 1 7 4 12 Suwalskie 5 1 1 1 20 1 7 4 12 Szczecińskie 20 1 1 1 Szczecińskie 15 1	Ostrołeckie -	Suma	2		97	34	133
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Piotrkowskie	20	L.		1	2	3
15 1 1 Płockie - Suma 2 2 Poznańskie 20 8 Siedleckie 1 1 10 1 1 20 4 4 5 1 2 20 4 4 Siedleckie - Suma 2 8 10 1 1 Skierniewickie 5 1 1 Suwalskie 5 4 4 Suwalskie 5 4 4 10 3 3 3 15 1 1 1 Suwalskie 20 1 1 1 Suwalskie - Suma 1 15 5 21 Szczecińskie 20 1 1 1 Toruńskie 15 1 1 1 20 1 5 6 1 1 Marszawskie 1 1 <td< td=""><td>Płockie</td><td>5</td><td></td><td></td><td>1</td><td></td><td>1</td></td<>	Płockie	5			1		1
Płockie - Suma 2 2 Poznańskie 20 8 8 Siedleckie 1 1 1 10 1 1 2 3 10 1 1 2 3 20 4 4 4 Siedleckie - Suma 2 8 10 Skierniewickie 5 1 1 1 Suwalskie 5 4 4 4 10 3 3 3 3 15 1 1 1 2 20 1 7 4 12 Suwalskie - Suma 1 1 1 1 Szczecińskie - Suma 1 1 1 1 Toruńskie - Suma 1 1 1 1 20 1 5 6 7 Wałbrzyskie 20 1 1 1 10 4 1 19<		15			1		1
Poznańskie 20 8 8 Siedleckie 1 1 1 10 1 1 1 10 1 1 2 20 4 4 Siedleckie - Suma 2 8 10 Skierniewickie 5 1 1 1 Shunskie 20 1 1 1 Suwalskie 5 4 4 4 10 3 3 3 3 15 1 1 2 2 20 1 7 4 12 Suwalskie - Suma 1 15 5 21 Szczecińskie - Suma 1 1 1 1 20 1 5 6 1 1 Toruńskie 1 1 1 1 1 20 1 3 3 3 3 Warszawskie 1	Płockie - Si	uma			2		2
Sledičcki 1 1 1 10 1 1 2 3 10 1 1 2 3 20 4 4 4 Siedleckie - Suma 2 8 10 Skierniewickie 5 1 1 1 Shuskie 20 4 4 4 Suwalskie 5 4 4 4 10 3 3 3 3 15 1 1 2 1 1 Suwalskie - Suma 1 15 5 21 Szczecińskie 20 1 1 1 Szczecińskie 1 1 1 1 20 1 1 1 1 1 20 1 1 1 1 1 20 1 1 5 6 3 3 Watszawskie 1 1	Poznańskie	20	8		1		8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Siedleckie	5	1		2		2
20 4 4 4 Siedleckie - Suma 2 8 10 Skierniewickie 5 1 1 Shunskie 20 1 1 Shunskie 20 1 1 1 Shunskie 5 4 4 4 10 3 3 3 10 3 3 3 20 1 1 2 20 1 7 4 12 Suwalskie - Suma 1 15 5 21 Szczecińskie 20 1 1 1 Toruńskie 15 1 1 1 20 1 1 1 1 20 1 1 1 1 $Warszawskie 1 1 1 1 1 10 4 1 119 2 126 10 4 2 36$		10	1		1		2
Siedleckie - Suma 2 8 10 Skierniewickie 5 1 1 1 Shunskie 20 4 4 4 Shunskie 5 4 4 4 10 3 3 3 3 15 1 1 20 1 7 4 12 Suwalskie - Suma 1 15 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 21 5 5 21 5 5 21 5 5 1 1 1 5 5 1 1 5 5 1		20			4		4
Skierniewickie 5 1 1 Shunskie 20 1 1 Suwalskie 5 4 4 10 3 3 15 1 1 20 20 1 7 4 12 Suwalskie - Suma 1 15 5 21 Szczecińskie 20 1 1 1 Szczecińskie - Suma 1 1 1 1 Toruńskie - Suma 1 1 1 1 Vałbrzyskie 20 1 3 3 Warszawskie 1 1 5 7 Warszawskie 1 1 19 2 126 10 4 1 119 2 126 20 3 4 253 853 1143 Warszawskie - Suma 42 8 499 856 1405 Suma całkowita 59 8 917 1036 2020	Siedleckie -	Suma	2		8		10
Stunskie 20 1 1 Suwalskie 5 4 4 10 3 3 15 1 1 2 20 1 7 4 12 Suwalskie - Suma 1 15 5 21 Szczecińskie 20 1 1 1 1 Toruńskie 15 1 1 1 1 20 1 5 6 6 7 Wałbrzyskie 20 3 3 3 3 4 1 188 1 91 1 10 4 1 119 2 126 20 33 4 253 853 1143	Skierniewickie	5			1		1
Suwaiskie 5 4 4 10 3 3 15 1 1 2 20 1 7 4 12 Suwaiskie - Suma 1 15 5 21 Szczecińskie - Suma 1 1 1 1 Szczecińskie - Suma 1 1 1 1 Toruńskie 15 1 1 1 20 1 5 6 6 Toruńskie 15 1 1 5 20 1 5 7 9 Wałbrzyskie 20 1 3 3 Warszawskie 1 1 88 1 91 10 4 1 119 2 126 20 33 4 253 853 1143 Warszawskie - Suma 42 8 499 856 1405 Suma całkowita 59 8 917 1036 2020 <td>Słupskie</td> <td>20</td> <td></td> <td></td> <td>4</td> <td>1</td> <td>A</td>	Słupskie	20			4	1	A
$\begin{array}{c cccccc} & 10 & & & & & & & & & & & & & & & & & $	Suwalskie	10			4		4
$\begin{array}{c cccccc} & 1 & 1 & 1 & 1 \\ \hline 20 & 1 & 7 & 4 & 12 \\ \hline Suwalskie - Suma & 1 & 15 & 5 & 21 \\ \hline Szczecińskie & 20 & 1 & 1 & 1 \\ \hline Szczecińskie & Suma & 1 & 1 & 1 \\ \hline Toruńskie & 15 & 1 & 1 & 1 \\ \hline 20 & 1 & 5 & 6 \\ \hline Toruńskie & 20 & 1 & 5 & 6 \\ \hline Toruńskie & 20 & 1 & 5 & 6 \\ \hline Małbrzyskie & 20 & 3 & 3 \\ \hline Warszawskie & 1 & 3 & 3 \\ \hline 5 & 1 & 1 & 88 & 1 & 91 \\ \hline 10 & 4 & 1 & 119 & 2 & 126 \\ \hline 15 & 4 & 2 & 36 & 42 \\ \hline 20 & 33 & 4 & 253 & 853 & 1143 \\ \hline Warszawskie - Suma & 42 & 8 & 499 & 856 & 1405 \\ \hline Suma całkowita & 59 & 8 & 917 & 1036 & 2020 \\ \hline \end{array}$		15			1	1	2
Suwalskie - Suma 1 15 5 21 Szczecińskie 20 1 1 1 Szczecińskie - Suma 1 1 1 1 Toruńskie 15 1 1 1 Toruńskie 15 1 1 1 Wałbrzyskie 20 1 5 6 Toruńskie - Suma 1 1 5 7 Wałbrzyskie 20 3 3 3 Warszawskie 1 1 88 1 91 10 4 1 119 2 126 20 33 4 253 853 1143 Warszawskie - Suma 42 8 499 856 1405 Suma całkowita 59 8 917 1036 2020		20	1		7	4	12
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Suwalskie -	Suma	1		15	5	21
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Szczecińskie	2.0				1	1
Iorunskie 15 1 1 20 1 5 6 Toruńskie - Suma 1 1 5 7 Wałbrzyskie 20 3 3 3 Warszawskie 1 1 88 1 91 10 4 1 119 2 126 15 4 2 36 42 20 33 4 253 853 1143 Warszawskie - Suma 42 8 499 856 1405 Suma całkowita 59 8 917 1036 2020	Szczecińskie -	Suma				1	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Toruńskie	15	1			5	6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Toruńskie	ZU Suma	1		1	5	7
Warszawskie 1 3 3 5 1 1 88 1 91 10 4 1 119 2 126 15 4 2 36 42 20 33 4 253 853 1143 Warszawskie - Suma 42 8 499 856 1405 Suma całkowita 59 8 917 1036 2020	Wałbrzyskie	20				3	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Warszawskie	1			3	,	3
10 4 1 119 2 126 15 4 2 36 42 20 33 4 253 853 1143 Warszawskie - Suma 42 8 499 856 1405 Suma całkowita 59 8 917 1036 2020		5	1	1	88	1	91
15 4 2 36 42 20 33 4 253 853 1143 Warszawskie - Suma 42 8 499 856 1405 Suma całkowita 59 8 917 1036 2020		10	4	1	119	2	126
1 20 55 4 253 853 1143 Warszawskie - Suma 42 8 499 856 1405 Suma całkowita 59 8 917 1036 2020		15	4	2	36	0.52	42
Suma całkowita 59 8 917 1036 2020	Wararowalia	<u>20</u>	42	4	400	855	143
	Suma całko	wita	59	8	917	1036	2020

Tabela 5.4.7—1. Liczba pomiarów ¹³¹I w tarczycy w zależności od wieku i rejonu Polski.

	Wartości przewidywane [Bo				ci pomiarow	e [Bq]	D (0			
_		95% przed	ział ufności		95% przed	ział ufności	P/O			
Data	Srednie	śred	Iniei	Srednie	śred	Iniei	Srednie			
	dzienne	Vras dolny	Vros górny	dzienne	Vras dolny	Vroa górny	dzienne			
20.1 96	2.00E+02	L 02E L 02	Kres goiny	9.09E±02	T SOE LO2	Kres goiny	0.17			
29-KW1-80	2.99E+02	1.93E+02	4.63E+02	8.08E+02	/.59E+02	8.60E+02	0.17			
30-KW1-80	0.94E+02	4.23E+02	1.22E+0.3	1.12E+03	1.02E+03	1.24E+03	0.45			
02-maj-80	1.13E+0.02	5.28E+02	$2.4/E \pm 0.05$	7.48E+02	0.89E+02	$8.11E \pm 02$	1.40			
03-maj-80	1.23E+03	4.88E+02	2.09E+03	1./2E+02	$0.0/E \pm 0.02$	9.80E±02	1.57			
04-maj-80	1.33E+0.02	4.48E+02	2.84E+03	8./2E+02	4.84E+02	1.3/E+03	1.49			
05-maj-80	1.3/E+03	4.11E+02	2.93E+03	7.52E+02	0.05E+02	8.06E+02	1.84			
06-maj-86	1.39E+03	3.//E+02	2.96E+03	/.68E+02	6.95E+02	8.48E+02	1.80			
0/-maj-86	1.40E+03	3.53E+02	2.7/E+03	6.60E+02	5./4E+02	7.58E+02	2.11			
08-maj-80	1.41E+03	3.4/E+02	2.82E+03	6.91E+02	5.81E+02	8.21E+02	2.04			
09-maj-86	1.41E+0.3	3.36E+02	3.00E+03	8.05E+02	6./3E+02	9.61E+02	1.70			
10-maj-86	1.37E+03	3.10E+02	2.96E+03	6.48E+02	3.39E+02	1.24E+03	2.14			
12-maj-86	1.26E+03	2.59E+02	2.73E+03	4.48E+02	3.61E+02	5.57E+02	2.88			
13-maj-86	1.20E+03	2.36E+02	2.60E+03	5.72E+02	4.66E+02	7.03E+02	2.15			
14-maj-86	1.13E+03	2.16E+02	2.46E+03	4.28E+02	3.35E+02	5.47E+02	2.71			
15-maj-86	1.0/E+03	1.97E+02	2.32E+03	2.65E+02	2.16E+02	3.24E+02	4.16			
16-maj-86	1.01E+03	1.80E+02	2.19E+03	8.14E+02	3.74E+02	1.77E+03	1.28			
17-maj-86	9.46E+02	1.64E+02	2.05E+03	2.99E+03	8.67E+02	1.03E+04	0.33			
19-maj-86	8.28E+02	1.37E+02	1.80E+03	1.22E+03	6.22E+02	2.39E+03	0.70			
20-maj-86	7.73E+02	1.25E+02	1.68E+03	8.26E+02	5.73E+02	1.19E+03	0.97			
21-maj-86	7.20E+02	1.14E+02	1.56E+03	4.39E+02	3.63E+02	5.30E+02	1.70			
22-maj-86	6.70E+02	1.04E+02	1.45E+03	5.66E+02	3.98E+02	8.05E+02	1.22			
23-maj-86	6.22E+02	9.54E+01	1.34E+03	1.71E+03	5.69E+02	5.15E+03	0.38			
24-maj-86	5.77E+02	8.71E+01	1.25E+03	3.83E+03	3.83E+03	3.83E+03	0.16			
26-maj-86	4.95E+02	7.27E+01	1.07E+03	5.28E+02	2.61E+02	1.07E+03	0.97			
27-maj-86	4.58E+02	6.64E+01	9.90E+02	6.96E+02	4.88E+02	9.91E+02	0.68			
28-maj-86	4.24E+02	6.06E+01	9.15E+02	3.12E+02	2.15E+02	4.54E+02	1.41			
29-maj-86	3.91E+02	5.54E+01	8.44E+02	6.54E+01	4.14E+01	1.03E+02	6.21			
30-maj-86	3.61E+02	5.06E+01	7.78E+02	1.81E+03	5.86E+02	5.58E+03	0.21			
02-cze-86	2.83E+02	3.85E+01	6.04E+02	2.43E+03	7.14E+02	8.30E+03	0.12			
03-cze-86	2.61E+02	2.99E+01	5.56E+02	4.88E+02	1.87E+02	1.27E+03	0.56			
04-cze-86	2.40E+02	2.71E+01	5.10E+02	4.35E+02	8.07E+01	2.34E+03	0.58			
05-cze-86	2.21E+02	2.48E+01	4.69E+02	2.62E+02	1.02E+02	6.78E+02	0.88			
06-cze-86	2.03E+02	2.26E+01	4.31E+02	2.35E+02	1.93E+02	2.85E+02	0.90			
09-cze-86	1.58E+02	1.72E+01	3.31E+02	4.60E+02	9.55E+01	7.33E+02	0.36			
10-cze-86	1.46E+02	1.57E+01	3.03E+02	3.90E+01	3.90E+01	3.90E+01	3.87			
11-cze-86	1.34E+02	1.44E+01	2.78E+02	3.55E+02	1.91E+02	6.61E+02	0.39			
13-cze-86	1.13E+02	1.20E+01	2.32E+02	3.17E+02	2.59E+02	3.88E+02	0.37			
17-cze-86	8.06E+01	8.35E+00	1.61E+02	4.14E+02	4.14E+02	4.14E+02	0.20			
25-cze-86	4.12E+01	4.04E+00	7.80E+01	1.12E+02	1.12E+02	1.12E+02	0.38			
26-cze-86	3.79E+01	3.69E+00	7.13E+01	1.40E+01	1.40E+01	1.40E+01	2.81			
01-lip-86	2.52E+01	2.35E+00	4.59E+01	1.70E+01	1.70E+01	1.70E+01	1.54			
02-lip-86	2.32E+01	2.15E+00	4.21E+01	6.93E+01	4.58E+01	1.05E+02	0.35			
03-lip-86	2.14E+01	1.96E+00	3.87E+01	2.71E+01	1.44E+01	5.12E+01	0.82			
04-lip-86	1.98E+01	1.79E+00	3.56E+01	5.58E+01	2.12E+01	1.47E+02	0.37			
06-lip-86	1.69E+01	1.49E+00	3.02E+01	3.90E+01	1.28E+01	1.19E+02	0.45			
07-lip-86	1.57E+01	1.37E+00	2.78E+01	4.01E+02	4.01E+02	4.01E+02	0.04			
08-lip-86	1.45E+01	1.25E+00	2.56E+01	2.64E+01	1.45E+01	4.83E+01	0.57			
09-lip-86	09-lip-86 1.34E+01 1.14E+00 2.37E+01 3.08E+01 1.87E+01 5.07E+01 0.45									
Ws	skaźnik niez	zawodności R	I za okres 29	kwiecień-9 lij	pca 1986 wyr	nosił 2.81,	_			
		Współcz	zynnik korela	acji log-norm ().57					
		Współczynn	iki prostei Li	n(P) = 0.84*ln(0.000)	(-)+0.67					

Tabela 5.4.7—2. Aktywności ¹³¹I w tarczycy –wartości przewidywane i pomiarowe u dorosłych osób z całej Polski, nie stosujących blokady.

Rysunek 5.4.7—1: Porównanie przewidywanych przez model wartości stężenia ¹³¹ I w tarczycy człowieka standardowego z wartościami pomiarowymi. (cała Polska bez blokady tarczycy)

	Wartoś	ci przewidyw	ane [Bq]	Wartoś	ci pomiarow	e [Bq]				
Data	Śradnia	95% przedz	ział ufności	Śradnia	95% przed	ział ufności	P/U Śrędnie			
Data	dzienne	śred	lniej	dzienne	śrec	lniej	dzienne			
	uzienne	Kres dolny	Kres górny	uzienne	Kres dolny	Kres górny	uzienne			
29-kwi-86	2.99E+02	1.93E+02	4.63E+02	8.08E+02	7.59E+02	8.60E+02	0.17			
30-kwi-86	6.94E+02	4.23E+02	1.22E+03	1.12E+03	1.02E+03	1.24E+03	0.45			
02-maj-86	1.15E+03	5.28E+02	2.47E+03	7.48E+02	6.89E+02	8.11E+02	1.46			
03-maj-86	1.25E+03	4.88E+02	2.69E+03	7.72E+02	6.07E+02	9.80E+02	1.57			
04-maj-86	1.33E+03	4.48E+02	2.84E+03	7.74E+02	5.94E+02	1.01E+03	1.68			
05-maj-86	1.37E+03	4.11E+02	2.93E+03	7.32E+02	6.65E+02	8.06E+02	1.84			
06-maj-86	1.39E+03	3.77E+02	2.96E+03	7.79E+02	7.05E+02	8.62E+02	1.77			
07-maj-86	1.40E+03	3.53E+02	2.77E+03	6.60E+02	5.74E+02	7.58E+02	2.11			
08-maj-86	1.41E+03	3.47E+02	2.82E+03	7.02E+02	5.92E+02	8.34E+02	2.01			
09-maj-86	1.41E+03	3.36E+02	3.00E+03	7.75E+02	6.50E+02	9.23E+02	1.83			
10-maj-86	1.37E+03	3.10E+02	2.96E+03	6.48E+02	3.39E+02	1.24E+03	2.14			
12-maj-86	1.26E+03	2.59E+02	2.73E+03	6.23E+02	4.94E+02	7.86E+02	2.07			
13-maj-86	1.20E+03	2.36E+02	2.60E+03	6.09E+02	5.04E+02	7.37E+02	2.02			
14-maj-86	1.13E+03	2.16E+02	2.46E+03	5.18E+02	3.97E+02	6.76E+02	2.24			
16-maj-86	1.01E+03	1.80E+02	2.19E+03	1.62E+03	6.56E+02	4.00E+03	0.64			
17-maj-86	9.46E+02	1.64E+02	2.05E+03	7.42E+02	7.42E+02	7.42E+02	1.32			
19-maj-86	8.28E+02	1.37E+02	1.80E+03	6.27E+02	3.09E+02	1.27E+03	1.37			
20-maj-86	7.73E+02	1.25E+02	1.68E+03	8.26E+02	5.73E+02	1.19E+03	0.97			
21-maj-86	7.20E+02	1.14E+02	1.56E+03	4.39E+02	3.63E+02	5.30E+02	1.70			
22-maj-86	6.70E+02	1.04E+02	1.45E+03	4.04E+02	3.16E+02	5.18E+02	1.71			
23-maj-86	6.22E+02	9.54E+01	1.34E+03	4.10E+02	2.29E+02	7.35E+02	1.57			
26-maj-86	4.95E+02	7.27E+01	1.07E+03	5.87E+02	3.29E+02	1.05E+03	0.88			
27-maj-86	4.58E+02	6.64E+01	9.90E+02	2.73E+02	2.19E+02	3.41E+02	1.74			
28-maj-86	4.24E+02	6.06E+01	9.15E+02	3.26E+02	2.37E+02	4.48E+02	1.35			
30-maj-86	3.61E+02	5.06E+01	7.78E+02	2.87E+02	9.85E+01	8.34E+02	1.31			
02-cze-86	2.83E+02	3.85E+01	6.04E+02	4.39E+02	4.39E+02	4.39E+02	0.67			
03-cze-86	2.61E+02	2.99E+01	5.56E+02	1.23E+02	1.23E+02	1.23E+02	2.20			
04-cze-86	2.40E+02	2.71E+01	5.10E+02	5.51E+01	4.89E+01	6.22E+01	4.53			
05-cze-86	2.21E+02	2.48E+01	4.69E+02	2.15E+02	7.16E+01	6.45E+02	1.07			
06-cze-86	2.03E+02	2.26E+01	4.31E+02	2.35E+02	1.93E+02	2.85E+02	0.90			
09-cze-86	1.58E+02	1.72E+01	3.31E+02	7.33E+02	7.33E+02	7.33E+02	0.23			
10-cze-86	10-cze-86 1.46E+02 1.57E+01 3.03E+02 3.90E+01 3.90E+01 3.90E+01 3.87									
Wskaźnik niezawodności RI za okres 29 kwiecień-9 lipca 1986 wynosił 1.96,										
	Współczynnik korelacji log-norm 0.47									
		Współczynn	iki prostej Lr	n(P)=0.63*ln(P)=0.63	0)+0.67					

Tabela 5.4.7—3. Aktywności ¹³¹I w tarczycy –wartości przewidywane i pomiarowe u dorosłych osób z Warszawy nie stosujących blokady.

Rysunek 5.4.7—2: Porównanie przewidywanych przez model wartości stężenia ¹³¹ I w tarczycy człowieka standardowego z wartościami pomiarowymi. (Mieszkańcy Warszawy bez blokady)

	Wartoś	ci przewidyw	vane [Bq]	Wartoś	ci pomiarow	e [Bq]	D/O
Data	Średnie dzienne	95% przed śrec	ział ufności Iniej	Średnie dzienne	95% przed śrec	ział ufności Iniej	Średnie
	uzienne	Kres dolny	Kres górny	uzienne	Kres dolny	Kres górny	uzitimit
17-maj-86	9.46E+02	1.64E+02	2.05E+03	3.89E+03	3.89E+03	3.89E+03	0.25
19-maj-86	8.28E+02	1.37E+02	1.80E+03	2.30E+03	1.26E+03	4.22E+03	0.37
23-maj-86	6.22E+02	9.54E+01	1.34E+03	5.30E+03	1.47E+03	1.92E+04	0.12
24-maj-86	5.77E+02	8.71E+01	1.25E+03	3.83E+03	3.83E+03	3.83E+03	0.16
27-maj-86	4.58E+02	6.64E+01	9.90E+02	1.46E+03	9.87E+02	2.17E+03	0.33
30-maj-86	3.61E+02	5.06E+01	7.78E+02	2.68E+03	1.68E+03	4.28E+03	0.14
02-cze-86	2.83E+02	3.85E+01	6.04E+02	3.43E+03	1.11E+03	1.06E+04	0.09
03-cze-86	2.61E+02	2.99E+01	5.56E+02	6.15E+02	2.32E+02	1.63E+03	0.44
04-cze-86	2.40E+02	2.71E+01	5.10E+02	1.74E+03	1.74E+03	1.74E+03	0.14
11-cze-86	1.34E+02	1.44E+01	2.78E+02	4.49E+02	2.11E+02	9.55E+02	0.31
13-cze-86	1.13E+02	1.20E+01	2.32E+02	2.77E+02	2.77E+02	2.77E+02	0.43
17-cze-86	8.06E+01	8.35E+00	1.61E+02	4.14E+02	4.14E+02	4.14E+02	0.20

Tabela 5.4.7—4. Aktywności ¹³¹I w tarczycy –wartości przewidywane i pomiarowe u osó dorosłych z woj. Ostrołęckiego, które nie przyjmowały blokującej dawki stabilnego jodu.

Rysunek 5.4.7—3: Porównanie przewidywanych przez model wartości stężenia ¹³¹ I w tarczycy człowieka standardowego z wartościami pomiarowymi. (Mieszkańcy Ostrołęki bez blokady tarczycy)

	Wartoś	ci przewidyw	vane [Bq]	Wartoś	ci pomiarow	e [Bq]	D/O		
Data	Śradnia	95% przed	ział ufności	Śradnia	95% przed	ział ufności	P/O Średnie		
Dutu	dzienne	śrec	lniej	dzienne	śrec	lniej	dzienne		
	uzieinie	Kres dolny	Kres górny	dzienne	Kres dolny	Kres górny	uzienne		
05-maj-86	7.50E+02	2.74E+02	1.61E+03	4.78E+02	3.94E+02	5.79E+02	1.48		
06-maj-86	8.21E+02	2.52E+02	1.75E+03	7.30E+02	4.33E+02	1.23E+03	1.08		
07-maj-86	8.80E+02	2.39E+02	1.75E+03	6.44E+02	4.53E+02	9.16E+02	1.32		
08-maj-86	9.42E+02	2.43E+02	1.88E+03	4.12E+02	2.89E+02	5.87E+02	2.22		
09-maj-86	9.77E+02	2.41E+02	2.09E+03	6.56E+02	4.70E+02	9.16E+02	1.48		
10-maj-86	9.79E+02	2.23E+02	2.11E+03	5.19E+02	4.19E+02	6.43E+02	1.89		
12-maj-86	9.33E+02	1.87E+02	2.02E+03	4.57E+02	3.28E+02	6.37E+02	2.07		
13-maj-86	8.99E+02	1.70E+02	1.95E+03	2.47E+02	7.24E+01	8.43E+02	3.71		
14-maj-86	8.62E+02	1.56E+02	1.87E+03	2.93E+02	2.31E+02	3.72E+02	3.00		
15-maj-86	8.23E+02	1.42E+02	1.78E+03	6.29E+02	3.59E+02	1.10E+03	1.34		
16-maj-86	7.81E+02	1.30E+02	1.70E+03	4.24E+02	2.31E+02	7.81E+02	1.89		
17-maj-86	7.39E+02	1.18E+02	1.60E+03	2.50E+02	2.01E+02	3.10E+02	3.05		
19-maj-86	6.56E+02	9.88E+01	1.42E+03	5.12E+02	3.06E+02	8.56E+02	1.32		
20-maj-86	6.15E+02	9.03E+01	1.33E+03	2.86E+02	2.60E+02	3.15E+02	2.22		
21-maj-86	5.76E+02	8.24E+01	1.25E+03	5.96E+02	3.32E+02	1.07E+03	1.00		
22-maj-86	5.38E+02	7.53E+01	1.17E+03	6.86E+02	2.79E+02	1.69E+03	0.81		
23-maj-86	5.02E+02	6.88E+01	1.09E+03	1.71E+03	5.12E+02	5.73E+03	0.30		
24-maj-86	4.68E+02	6.28E+01	1.01E+03	2.37E+03	1.90E+03	2.96E+03	0.20		
26-maj-86	4.04E+02	5.24E+01	8.74E+02	3.58E+02	1.86E+02	6.89E+02	1.17		
27-maj-86	3.75E+02	4.79E+01	8.10E+02	4.78E+02	3.45E+02	6.61E+02	0.81		
28-maj-86	3.47E+02	4.37E+01	7.50E+02	7.69E+02	3.01E+02	1.96E+03	0.47		
29-maj-86	3.22E+02	4.00E+01	6.94E+02	9.16E+01	4.05E+01	2.07E+02	3.64		
30-maj-86	2.98E+02	3.65E+01	6.41E+02	3.52E+02	2.32E+02	5.36E+02	0.88		
02-cze-86	2.35E+02	2.78E+01	5.01E+02	1.02E+03	3.14E+02	3.34E+03	0.24		
03-cze-86	2.17E+02	2.16E+01	4.62E+02	2.80E+02	2.80E+02	2.80E+02	0.80		
04-cze-86	2.00E+02	1.96E+01	4.25E+02	1.55E+02	1.55E+02	1.55E+02	1.34		
05-cze-86	1.84E+02	1.79E+01	3.91E+02	1.84E+02	1.17E+02	2.90E+02	1.04		
06-cze-86	1.70E+02	1.63E+01	3.59E+02	2.27E+02	6.33E+01	8.15E+02	0.78		
11-cze-86	1.12E+02	1.04E+01	2.33E+02	2.96E+02	2.96E+02	2.96E+02	0.40		
17-cze-86	6.82E+01	6.02E+00	1.37E+02	3.61E+03	3.61E+03	3.61E+03	0.02		
18-cze-86 6.27E+01 5.50E+00 1.25E+02 5.40E+01 5.40E+01 5.40E+01 1.21									
Wskaźnik niezawodności RI za okres 29 kwiecień-9 lipca 1986 wynosił 2.8									
Współczynnik korelacji log-norm 0.036									
		Współczyn	niki prostej I	Ln(P)=0.17*ln	(O)+5.0				

Tabela 5.4.7—5. Aktywności ¹³¹I w tarczycy –wartości przewidywane i pomiarowe u osób dorosłych z całej Polski , którzy otrzymali blokującą dawkę stabilnego jodu 29-30-kwiecień 1986r.

Rysunek 5.4.7—4: Porównanie przewidywanych przez model wartości stężenia ¹³¹ I w tarczycy człowieka standardowego z wartościami pomiarowymi. (cała Polska - blokada tarczycy 30-04-86)

	Wart	ości przewic	lywane	War	tości pomiar	owe	D/O	
Data	Średnie	95% przed	ział ufności	Średnie	95% przed	ział ufności	Średnie	
	dzienne	śrec	Iniej	dzienne	śrec	lniej	dzienne	
		Kres dolny	Kres górny		Kres dolny	Kres górny		
04-maj-86	6.57E+02	2.98E+02	1.41E+03	3.60E+02	1.44E+02	9.02E+02	1.70	
05-maj-86	7.50E+02	2.74E+02	1.61E+03	4.59E+02	3.55E+02	5.95E+02	1.54	
06-maj-86	8.21E+02	2.52E+02	1.75E+03	3.67E+02	3.06E+02	4.42E+02	2.15	
07-maj-86	8.80E+02	2.39E+02	1.75E+03	4.22E+02	3.32E+02	5.36E+02	2.01	
08-maj-86	9.42E+02	2.43E+02	1.88E+03	4.44E+02	2.82E+02	7.01E+02	2.06	
09-maj-86	9.77E+02	2.41E+02	2.09E+03	6.40E+02	4.88E+02	8.39E+02	1.51	
10-maj-86	9.79E+02	2.23E+02	2.11E+03	5.27E+02	4.12E+02	6.76E+02	1.86	
12-maj-86	9.33E+02	1.87E+02	2.02E+03	5.48E+02	3.99E+02	7.54E+02	1.73	
13-maj-86	8.99E+02	1.70E+02	1.95E+03	2.78E+02	9.14E+01	8.43E+02	3.30	
14-maj-86	8.62E+02	1.56E+02	1.87E+03	2.58E+02	1.90E+02	3.49E+02	3.42	
15-maj-86	8.23E+02	1.42E+02	1.78E+03	3.32E+02	2.53E+02	4.35E+02	2.54	
16-maj-86	7.81E+02	1.30E+02	1.70E+03	3.05E+02	2.16E+02	4.29E+02	2.63	
17-maj-86	7.39E+02	1.18E+02	1.60E+03	2.68E+02	1.93E+02	3.72E+02	2.84	
19-maj-86	6.56E+02	9.88E+01	1.42E+03	5.37E+02	3.23E+02	8.93E+02	1.26	
20-maj-86	6.15E+02	9.03E+01	1.33E+03	2.49E+02	1.95E+02	3.17E+02	2.55	
21-maj-86	5.76E+02	8.24E+01	1.25E+03	3.31E+02	1.66E+02	6.64E+02	1.80	
23-maj-86	5.02E+02	6.88E+01	1.09E+03	2.54E+02	2.02E+02	3.19E+02	2.04	
26-maj-86	4.04E+02	5.24E+01	8.74E+02	3.21E+02	3.21E+02	3.21E+02	1.31	
27-maj-86	3.75E+02	4.79E+01	8.10E+02	3.65E+02	1.81E+02	7.35E+02	1.07	
28-maj-86	3.47E+02	4.37E+01	7.50E+02	3.54E+02	1.76E+02	7.11E+02	1.02	
30-maj-86	2.98E+02	3.65E+01	6.41E+02	2.73E+02	1.85E+02	4.03E+02	1.13	
02-cze-86	2.35E+02	2.78E+01	5.01E+02	3.52E+02	9.62E+01	1.29E+03	0.69	
03-cze-86	2.17E+02	2.16E+01	4.62E+02	2.80E+02	2.80E+02	2.80E+02	0.80	
04-cze-86	2.00E+02	1.96E+01	4.25E+02	1.55E+02	1.55E+02	1.55E+02	1.34	
05-cze-86	1.84E+02	1.79E+01	3.91E+02	2.28E+02	1.11E+02	4.69E+02	0.84	
06-cze-86	1.70E+02	1.63E+01	3.59E+02	8.80E+01	8.80E+01	8.80E+01	2.00	
18-cze-86 6.27E+01 5.50E+00 1.25E+02 5.40E+01 5.40E+01 5.40E+01 1.21								
Wskaźnik niezawodności RI za okres 29 kwiecień-9 lipca 1986 wynosił 1.9								
		Współcz	zynnik korela	icji log-norm (0.62			
		Współczyni	niki prostej L	n(P)=1.05*ln(O)+0.2			

Tabela 5.4.7—6. Aktywności ¹³¹I w tarczycy –wartości przewidywane i pomiarowe u osób dorosłych z woj. Warszawskiego, którzy otrzymali blokującą dawkę stabilnego jodu 29-30-kwiecień 1986r.

Rysunek 5.4.7—5: Porównanie przewidywanych przez model wartości stężenia ¹³¹ I w tarczycy człowieka standardowego z wartościami pomiarowymi. (Warszawa – blokada tarczycy 30-04-86)

	Wartoś	ci przewidyw	vane [Bq]	Wartoś	ci pomiarow	e [Bq]	D/O
Data	Średnie	95% przed	ział ufności	Średnie	95% przed	ział ufności	Średnie
	dzienne	śrec	Iniej	dzienne	średniej		dzienne
	dziennie	Kres dolny	Kres górny	dziennie	Kres dolny	Kres górny	u Li v iiii v
14-maj-86	8.62E+02	1.56E+02	1.87E+03	7.32E+02	7.32E+02	7.32E+02	1.20
15-maj-86	8.23E+02	1.42E+02	1.78E+03	3.32E+03	3.32E+03	3.32E+03	0.25
16-maj-86	7.81E+02	1.30E+02	1.70E+03	2.47E+03	2.47E+03	2.47E+03	0.32
21-maj-86	5.76E+02	8.24E+01	1.25E+03	8.13E+02	8.13E+02	8.13E+02	0.73
22-maj-86	5.38E+02	7.53E+01	1.17E+03	9.87E+02	8.24E+02	1.18E+03	0.56
23-maj-86	5.02E+02	6.88E+01	1.09E+03	1.09E+04	1.91E+03	1.78E+04	0.05
24-maj-86	4.68E+02	6.28E+01	1.01E+03	2.06E+03	1.78E+03	2.38E+03	0.24
27-maj-86	3.75E+02	4.79E+01	8.10E+02	3.72E+02	1.76E+02	7.83E+02	1.05
28-maj-86	3.47E+02	4.37E+01	7.50E+02	1.05E+03	5.87E+02	1.87E+03	0.34
30-maj-86	2.98E+02	3.65E+01	6.41E+02	1.09E+03	7.61E+02	1.57E+03	0.28
02-cze-86	2.35E+02	2.78E+01	5.01E+02	1.42E+03	1.05E+03	1.92E+03	0.17
03-cze-86	2.17E+02	2.16E+01	4.62E+02	1.13E+03	4.20E+02	3.02E+03	0.20
05-cze-86	1.84E+02	1.79E+01	3.91E+02	1.26E+02	1.26E+02	1.26E+02	1.52
06-cze-86	1.70E+02	1.63E+01	3.59E+02	2.89E+02	2.89E+02	2.89E+02	0.61
11-cze-86	1.12E+02	1.04E+01	2.33E+02	2.96E+02	2.96E+02	2.96E+02	0.40
17-cze-86	6.82E+01	6.02E+00	1.37E+02	3.61E+03	3.61E+03	3.61E+03	0.02

Tabela 5.4.7—7. Aktywności ¹³¹I w tarczycy –wartości przewidywane i pomiarowe u osób dorosłych z woj. Ostrołęckiego, którzy otrzymali blokującą dawkę stabilnego jodu 29-30-kwiecień 1986r.

	Wartoś	ci przewidyw	ane [Bq]	Wartoś	ci pomiarow	e [Bq]	D /O		
Data	Śradnia	95% przedz	ział ufności	Śradnia	95% przed	ział ufności	P/U Średnie		
Data	dzienne	śred	lniej	dzienne	śrec	lniej	dzienne		
	uzienne	Kres dolny	Kres górny	uzienne	Kres dolny	Kres górny	azienne		
05-maj-86	5.70E+02	1.04E+02	1.24E+03	3.60E+02	1.91E+02	6.76E+02	1.40		
06-maj-86	6.88E+02	9.43E+01	1.49E+03	2.85E+02	2.85E+02	2.85E+02	2.24		
07-maj-86	7.77E+02	8.86E+01	1.64E+03	2.46E+02	1.48E+02	4.08E+02	2.99		
08-maj-86	8.47E+02	9.02E+01	1.79E+03	9.29E+02	3.36E+02	2.57E+03	0.88		
09-maj-86	8.91E+02	8.90E+01	1.93E+03	6.71E+02	3.01E+02	1.50E+03	1.30		
10-maj-86	9.07E+02	8.16E+01	1.97E+03	6.56E+02	5.22E+02	8.23E+02	1.38		
12-maj-86	8.90E+02	6.63E+01	1.94E+03	1.44E+02	1.15E+02	1.81E+02	6.23		
13-maj-86	8.66E+02	5.98E+01	1.88E+03	5.59E+02	3.31E+02	9.46E+02	1.57		
14-maj-86	8.35E+02	5.38E+01	1.82E+03	1.39E+02	1.04E+02	1.85E+02	6.13		
15-maj-86	7.99E+02	4.85E+01	1.74E+03	1.94E+03	1.99E+02	1.89E+04	0.42		
16-maj-86	7.61E+02	4.38E+01	1.66E+03	9.42E+02	1.10E+01	1.47E+03	0.83		
17-maj-86	7.20E+02	3.94E+01	1.57E+03	2.07E+02	9.74E+01	4.38E+02	3.58		
19-maj-86	6.37E+02	3.21E+01	1.39E+03	1.34E+03	6.08E+02	2.93E+03	0.49		
20-maj-86	5.96E+02	2.89E+01	1.30E+03	1.17E+02	3.07E+01	4.46E+02	5.26		
21-maj-86	5.56E+02	2.61E+01	1.21E+03	9.49E+02	6.13E+02	1.47E+03	0.61		
22-maj-86	5.18E+02	2.36E+01	1.13E+03	6.84E+02	3.80E+02	1.23E+03	0.78		
23-maj-86	4.81E+02	2.13E+01	1.05E+03	1.44E+03	2.96E+02	6.99E+03	0.35		
24-maj-86	4.45E+02	1.92E+01	9.69E+02	1.29E+03	8.02E+02	2.09E+03	0.36		
26-maj-86	3.80E+02	1.56E+01	8.27E+02	7.49E+02	2.64E+02	2.12E+03	0.53		
27-maj-86	3.50E+02	1.41E+01	7.62E+02	6.15E+02	4.80E+02	7.89E+02	0.59		
28-maj-86	3.23E+02	1.27E+01	7.02E+02	7.75E+02	5.51E+02	1.09E+03	0.43		
29-maj-86	2.97E+02	1.15E+01	6.45E+02	5.00E+01	5.00E+01	5.00E+01	6.18		
30-maj-86	2.73E+02	1.04E+01	5.92E+02	1.13E+03	2.37E+02	5.39E+03	0.25		
02-cze-86	2.10E+02	7.64E+00	4.55E+02	8.35E+02	1.63E+02	4.27E+03	0.26		
03-cze-86	1.92E+02	5.87E+00	4.16E+02	2.42E+02	2.28E+02	2.57E+02	0.83		
04-cze-86	1.76E+02	5.26E+00	3.81E+02	1.05E+02	1.05E+02	1.05E+02	1.75		
06-cze-86	1.47E+02	4.29E+00	3.18E+02	3.93E+02	3.93E+02	3.93E+02	0.39		
09-cze-86	1.12E+02	3.16E+00	2.41E+02	2.68E+02	2.68E+02	2.68E+02	0.44		
18-cze-86	4.86E+01	1.27E+00	1.02E+02	1.67E+02	1.67E+02	1.67E+02	0.30		
20-cze-86	4.03E+01	1.03E+00	8.41E+01	3.14E+02	3.14E+02	3.14E+02	0.13		
01-lip-86 1.45E+01 3.40E-01 2.85E+01 1.70E+01 1.70E+01 1.70E+01 0.89									
W	Wskaźnik niezawodności RI za okres 29 kwiecień-8 lipca 1986 wynosił 2.84								
		Współcz	zynnik korela	icji log-norm (0.23				
		Współczynr	niki prostej L	n(P)=0.46*ln((O)+3.1				

Tabela 5.4.7—8. Aktywności ¹³¹I w tarczycy –wartości przewidywane i pomiarowe u dzieci w wieku 5 lat z całej Polski, które otrzymały blokującą dawkę stabilnego jodu 29-30-kwiecień 1986r.

Rysunek 5.4.7—6: Porównanie przewidywanych przez model wartości stężenia ¹³¹ I w tarczycy u dzieci w wieku dziecko 5 lat z wartościami pomiarowymi. (cała Polska – blokada tarczycy 30-04-86)

	Wart	tości przewid	ywane	War	tości pomiarc	owe	D/O			
Data	Średnie dzienne	95% przedz śred	ział ufności Iniej	Średnie	95% przed śrec	ział ufności Iniej	Srednie dzienne			
	uzienne	Kres dolny	Kres górny		Kres dolny	Kres górny	uzionite			
05-maj-86	5.70E+02	1.04E+02	1.24E+03	3.60E+02	1.91E+02	6.76E+02	1.40			
06-maj-86	6.88E+02	9.43E+01	1.49E+03	2.85E+02	2.85E+02	2.85E+02	2.24			
07-maj-86	7.77E+02	8.86E+01	1.64E+03	2.46E+02	1.48E+02	4.08E+02	2.99			
08-maj-86	8.47E+02	9.02E+01	1.79E+03	4.64E+02	2.39E+02	9.00E+02	1.76			
09-maj-86	8.91E+02	8.90E+01	1.93E+03	6.71E+02	3.01E+02	1.50E+03	1.30			
10-maj-86	9.07E+02	8.16E+01	1.97E+03	5.72E+02	4.59E+02	7.11E+02	1.58			
12-maj-86	8.90E+02	6.63E+01	1.94E+03	1.71E+02	1.33E+02	2.20E+02	5.26			
13-maj-86	8.66E+02	5.98E+01	1.88E+03	5.59E+02	3.31E+02	9.46E+02	1.57			
14-maj-86	8.35E+02	5.38E+01	1.82E+03	1.38E+02	4.10E+01	4.63E+02	6.18			
15-maj-86	7.99E+02	4.85E+01	1.74E+03	1.40E+02	5.07E+01	3.87E+02	5.84			
17-maj-86	7.20E+02	3.94E+01	1.57E+03	2.07E+02	9.74E+01	4.38E+02	3.58			
19-maj-86	6.37E+02	3.21E+01	1.39E+03	1.08E+03	4.22E+02	2.75E+03	0.61			
20-maj-86	5.96E+02	2.89E+01	1.30E+03	1.17E+02	3.07E+01	4.46E+02	5.26			
21-maj-86	5.56E+02	2.61E+01	1.21E+03	7.57E+02	2.56E+02	2.24E+03	0.76			
22-maj-86	5.18E+02	2.36E+01	1.13E+03	7.05E+02	1.07E+02	1.16E+03	0.76			
23-maj-86	4.81E+02	2.13E+01	1.05E+03	2.16E+02	1.61E+02	2.89E+02	2.31			
26-maj-86	3.80E+02	1.56E+01	8.27E+02	6.52E+02	2.03E+02	2.10E+03	0.61			
27-maj-86	3.50E+02	1.41E+01	7.62E+02	3.85E+02	2.56E+02	5.79E+02	0.95			
28-maj-86	3.23E+02	1.27E+01	7.02E+02	4.33E+02	4.33E+02	4.33E+02	0.78			
30-maj-86	2.73E+02	1.04E+01	5.92E+02	4.30E+01	4.30E+01	4.30E+01	6.60			
02-cze-86	2.10E+02	7.64E+00	4.55E+02	8.40E+02	1.52E+02	1.53E+03	0.26			
04-cze-86	1.76E+02	5.26E+00	3.81E+02	1.05E+02	1.05E+02	1.05E+02	1.75			
09-cze-86	1.12E+02	3.16E+00	2.41E+02	2.68E+02	2.68E+02	2.68E+02	0.44			
W	skaźnik niez	zawodności F	I za okres 29	9 kwiecień-8 li	pca 1986 wy	nosił 2.79				
	Współczynnik korelacji log-norm 0.02									
		Współczyn	niki prostej L	$\ln(P) = 0.1 \ln(P)$	O)+5.6					

Tabela 5.4.7—9. Aktywności ¹³¹I w tarczycy –wartości przewidywane i pomiarowe u dzieci w wieku 5 lat z woj. warszawskiego, które otrzymały blokującą dawkę stabilnego jodu 29-30-kwiecień 1986r.

Rysunek 5.4.7—7: Porównanie przewidywanych przez model wartości stężenia ¹³¹ I w tarczycy u dzieci w wieku 5lat z wartościami pomiarowymi. (Warszawa – blokada tarczycy 30-04-86)

	Wart	ości przewic	lywane	War	tości pomiar	owe	D /O	
Data	Średnie	95% przedz	ział ufności	Średnie	95% przed	ział ufności	P/O Średnie	
Dutu	dzienne	śred	lniej	dzienne	średniej		dzienne	
	uzienne	Kres dolny	Kres górny	dzienne	Kres dolny	Kres górny	azienne	
05-maj-86	6.66E+02	1.65E+02	1.44E+03	8.71E+02	6.77E+02	1.12E+03	0.69	
06-maj-86	7.86E+02	1.51E+02	1.70E+03	2.96E+02	1.98E+02	4.42E+02	2.49	
07-maj-86	8.80E+02	1.43E+02	1.83E+03	6.27E+02	4.11E+02	9.58E+02	1.33	
08-maj-86	9.59E+02	1.46E+02	2.00E+03	5.09E+02	4.15E+02	6.24E+02	1.82	
09-maj-86	1.01E+03	1.44E+02	2.18E+03	6.43E+02	5.08E+02	8.13E+02	1.54	
10-maj-86	1.03E+03	1.33E+02	2.23E+03	7.47E+02	5.57E+02	1.00E+03	1.37	
12-maj-86	1.01E+03	1.10E+02	2.20E+03	3.40E+02	2.79E+02	4.14E+02	3.00	
13-maj-86	9.84E+02	1.00E+02	2.14E+03	9.45E+02	4.73E+02	1.89E+03	1.06	
14-maj-86	9.51E+02	9.12E+01	2.07E+03	3.86E+02	2.99E+02	4.98E+02	2.51	
15-maj-86	9.14E+02	8.29E+01	1.99E+03	1.69E+03	4.08E+02	6.96E+03	0.55	
16-maj-86	8.72E+02	7.54E+01	1.90E+03	3.22E+02	3.22E+02	3.22E+02	2.77	
17-maj-86	8.29E+02	6.86E+01	1.80E+03	9.53E+02	3.47E+02	2.61E+03	0.89	
19-maj-86	7.40E+02	5.68E+01	1.61E+03	6.61E+02	4.58E+02	9.53E+02	1.15	
20-maj-86	6.95E+02	5.16E+01	1.51E+03	3.66E+02	2.04E+02	6.56E+02	1.96	
21-maj-86	6.52E+02	4.70E+01	1.42E+03	1.26E+03	1.14E+03	1.40E+03	0.53	
22-maj-86	6.10E+02	4.28E+01	1.33E+03	5.53E+02	1.32E+02	2.32E+03	1.14	
23-maj-86	5.69E+02	3.89E+01	1.23E+03	2.29E+03	7.64E+02	6.84E+03	0.26	
24-maj-86	5.30E+02	3.54E+01	1.15E+03	2.35E+03	2.47E+02	3.85E+03	0.23	
26-maj-86	4.57E+02	2.93E+01	9.93E+02	6.19E+02	3.58E+02	1.07E+03	0.77	
27-maj-86	4.24E+02	2.67E+01	9.20E+02	3.31E+02	2.00E+02	5.46E+02	1.33	
28-maj-86	3.92E+02	2.43E+01	8.52E+02	9.04E+02	4.89E+02	1.67E+03	0.45	
29-maj-86	3.63E+02	2.21E+01	7.88E+02	8.84E+01	5.29E+01	1.48E+02	4.27	
30-maj-86	3.35E+02	2.01E+01	7.27E+02	1.47E+03	5.01E+02	4.32E+03	0.24	
02-cze-86	2.63E+02	1.51E+01	5.67E+02	2.37E+03	4.45E+02	1.26E+04	0.12	
04-cze-86	2.23E+02	1.06E+01	4.80E+02	3.22E+02	4.67E+01	2.22E+03	0.72	
05-cze-86	2.05E+02	9.62E+00	4.41E+02	2.85E+02	2.85E+02	2.85E+02	0.75	
09-cze-86	1.46E+02	6.60E+00	3.12E+02	2.77E+02	2.77E+02	2.77E+02	0.55	
20-cze-86	5.63E+01	2.34E+00	1.16E+02	6.99E+02	6.99E+02	6.99E+02	0.08	
04-lip-86	1.69E+01	6.28E-01	3.17E+01	4.20E+01	3.46E+01	5.10E+01	0.42	
08-lip-86 1.21E+01 4.31E-01 2.23E+01 3.34E+01 3.34E+01 3.34E+01 0.38								
Wskaźnik niezawodności RI za okres 29 kwiecień-8 lipca 1986 wynosił 2.67								
		Współcz	zynnik korela	cji log-norm (0.36			
		Współczynn	iki prostej Li	n(P) = 0.66 * ln(0)	D)+1.87			

Tabela 5.4.7—10. Aktywności ¹³¹I w tarczycy –wartości przewidywane i pomiarowe u dzieci w wieku 10 lat z całej Polski, które otrzymały blokującą dawkę stabilnego jodu 29-30-kwiecień 1986r.

Rysunek 5.4.7—8: Porównanie przewidywanych przez model wartości stężenia ¹³¹ I w tarczycy u dzieci w wieku 10 lat z wartościami pomiarowymi. (cała Polska – blokada tarczycy 30-04-86)

	Wartoś	ci przewidyw	vane [Bq]	Wartoś	ci pomiarow	e [Bq]	D /O			
Data	Średnie	95% przed	ział ufności	Średnie	95% przed	ział ufności	P/O Średnie			
Duiu	dzienne	śred	lniej	dzienne	śrec	lniej	dzienne			
	uzienne	Kres dolny	Kres górny		Kres dolny	Kres górny	(Literine			
05-maj-86	6.66E+02	1.65E+02	1.44E+03	8.71E+02	6.77E+02	1.12E+03	0.69			
06-maj-86	7.86E+02	1.51E+02	1.70E+03	2.96E+02	1.98E+02	4.42E+02	2.49			
07-maj-86	8.80E+02	1.43E+02	1.83E+03	6.27E+02	4.11E+02	9.58E+02	1.33			
08-maj-86	9.59E+02	1.46E+02	2.00E+03	5.21E+02	4.16E+02	6.54E+02	1.77			
09-maj-86	1.01E+03	1.44E+02	2.18E+03	6.43E+02	5.08E+02	8.13E+02	1.54			
10-maj-86	1.03E+03	1.33E+02	2.23E+03	6.49E+02	5.01E+02	8.41E+02	1.57			
12-maj-86	1.01E+03	1.10E+02	2.20E+03	5.15E+02	3.49E+02	7.61E+02	1.98			
13-maj-86	9.84E+02	1.00E+02	2.14E+03	1.07E+03	4.77E+02	2.39E+03	0.93			
14-maj-86	9.51E+02	9.12E+01	2.07E+03	3.82E+02	3.07E+02	4.77E+02	2.53			
15-maj-86	9.14E+02	8.29E+01	1.99E+03	3.54E+02	2.54E+02	4.92E+02	2.64			
16-maj-86	8.72E+02	7.54E+01	1.90E+03	3.22E+02	3.22E+02	3.22E+02	2.77			
17-maj-86	8.29E+02	6.86E+01	1.80E+03	4.14E+02	2.37E+02	7.23E+02	2.05			
19-maj-86	7.40E+02	5.68E+01	1.61E+03	6.61E+02	4.58E+02	9.53E+02	1.15			
20-maj-86	6.95E+02	5.16E+01	1.51E+03	3.66E+02	2.04E+02	6.56E+02	1.96			
21-maj-86	6.52E+02	4.70E+01	1.42E+03	7.66E+02	1.91E+02	3.07E+03	0.88			
22-maj-86	6.10E+02	4.28E+01	1.33E+03	5.53E+02	1.32E+02	2.32E+03	1.14			
23-maj-86	5.69E+02	3.89E+01	1.23E+03	3.00E+02	2.29E+02	3.93E+02	1.96			
24-maj-86	5.30E+02	3.54E+01	1.15E+03	1.18E+02	1.18E+02	1.18E+02	4.64			
26-maj-86	4.57E+02	2.93E+01	9.93E+02	5.78E+02	3.04E+02	1.10E+03	0.82			
27-maj-86	4.24E+02	2.67E+01	9.20E+02	3.31E+02	2.00E+02	5.46E+02	1.33			
28-maj-86	3.92E+02	2.43E+01	8.52E+02	3.90E+02	1.35E+02	1.12E+03	1.04			
30-maj-86	3.35E+02	2.01E+01	7.27E+02	2.52E+02	2.42E+02	2.62E+02	1.38			
02-cze-86	2.63E+02	1.51E+01	5.67E+02	4.24E+02	4.24E+02	4.24E+02	0.64			
04-cze-86	2.23E+02	1.06E+01	4.80E+02	1.19E+02	4.11E+01	3.45E+02	1.95			
05-cze-86 2.05E+02 9.62E+00 4.41E+02 2.85E+02 2.85E+02 2.85E+02 0.75										
W	Wskaźnik niezawodności RI za okres 29 kwiecień-8 lipca 1986 wynosił 1 86									
		Współcz	zynnik korela	icji log-norm (0.28					
		Współczyn	niki prostej L	n(P) = 0.48 * ln(O)+3.5					

Tabela 5.4.7—11. Aktywności ¹³¹I w tarczycy –wartości przewidywane i pomiarowe u dzieci w wieku 10 lat z woj. warszawskiego, które otrzymały blokującą dawkę stabilnego jodu 29-30-kwiecień 1986r.

Rysunek 5.4.7—9: Porównanie przewidywanych przez model wartości stężenia ¹³¹ I w tarczycy u dzieci w wieku 10 lat z wartościami pomiarowymi. (Warszawa – blokada tarczycy 30-04-86)

5.4.8 Ocena dawek obciążających H₅₀ na tarczycę dla ludności Polski

Przeprowadzono obliczenia dawek obciążającej H₅₀ dla ludności Polski, biorąc za podstawę zmierzone aktywności ¹³¹I w tarczycy w okresie od 4.05.86 do 27.06.86. Komputerowy program TARLEV obliczał dla każdego indywidualnego pomiaru scałkowaną aktywność ¹³¹I oraz dawkę H₅₀, przez porównanie zmierzonej aktywności ¹³¹I w tarczycy z aktywnością ¹³¹I przewidywaną przez model na dany dzień pomiaru. W obliczeniach dawek uwzględniono parametry przeliczeniowe charakterystyczne dla danej grupy wiekowej. Wartości dawek H₅₀ dla mieszkańców niektórych wysoko, średnio i nisko skażonych rejonów w Polsce, obliczone na podstawie analizy wyników pomiarów zawartości ¹³¹I w tarczycy przedstawia Tabela 5.4.8—1, Tabela 5.4.8—2, Tabela 5.4.8—3 oraz Tabela 5.4.8—4.

Wartości dawek H₅₀ dla krytycznych grup wiekowych tzn. dzieci 1-5 i 5-10 lat mieszkańców silnie skażonych terenów Polski, są bliskie dopuszczalnego limitu dawki dla ludności (50 mSv) *[15]*, *[105]*, natomiast maksymalne dawki H₅₀ przekraczają ten limit w niektórych przypadkach 4-krotnie; przykładowo dla województwa ostrołęckiego: 63 mSv w grupie dzieci w wieku 1 - 5 lat (maksymalna dawka 217 mSv) ; 72.7 mSv w grupie dzieci 5 - 10 lat (maksymalna dawka 203 mSv). Nie można jednak wykluczyć pojawienia się podobnych dawek w innych silnie skażonych rejonach. Biorąc pod uwagę zakres 95% przedziału ufności ze współczynnikiem 10×P; częstość występowanie dawek kilkakrotnie przekraczających limit 50 mSv stanowi około 5% wszystkich dawek w analizowanych rejonach.

Należy jednak zauważyć, że stacje monitoringu SPSP nie zarejestrowały wysokich skażeń mleka w innych rejonach. Dla województw: warszawskiego i ostrołęckiego, w wyniku zastosowania profilaktycznej dawki stabilnego jodu, redukcja dawki H_{50} wynosiła 40 ± 10% . Wartości te mogą się znacznie zmieniać w indywidualnych przypadkach, gdyż zależą one zarówno od szeregu parametrów osobniczych jak i lokalnych różnic w skażeniach środowiska. Świadczy o tym między innymi duży rozrzut statystyczny wyników pomiarów ¹³¹I w tarczycy nawet dla mieszkańców tego samego regionu.

Dla terenów średnio i słabo skażonych obliczone wartości H₅₀, nawet w przypadku krytycznych grup wiekowych są mniejsze odpowiednio pięciokrotnie i dziesięciokrotnie w porównaniu z terenami silnie skażonymi.

Biorąc pod uwagę nawet tak niesprzyjające okoliczności jak brak blokady tarczycy i nieprzestrzeganie zakazu konsumpcji skażonego mleka oraz krytyczną grupę wiekową dzieci 1-5 lat, maksymalna dawka H₅₀ nie powinna przekroczyć 500 mSv (limitu dla narażonych zawodowo) co stanowi 1/3 limitu przewidzianego dla ewakuacji (1500 mSv) *[15]*, *[105]*.

165

	Dete		Średnia o	lawka	Zal	kres	Redukcja							
REJON	Liczba pomiarów	Data blokady	[mSv]		min	max	dawki H ₅₀ [%]							
	REJON O WYSOKIM SKAŻENIU													
Łomża (województwo)	5	30.04.86	13.9	8.5	7.5	25.3								
Ostrołęka (województwo)	36	30.04.86	24.4	30.8	1.7	123.9								
Ostrołęka (miasto)	12	bez blokady	18.7	6.6	6.8	28.2	0							
Ostrołęka (miasto)	7	29.04.85	10.9	2.9	6.1	16.0	42							
Ostrołęka (miasto)	16	30.04.86	8.8	4.7	1.8	17.4	53							
Białystok (województwo)	38	30.04.86	4.5	2.3	0.5	9.5								
REJON O ŚREDNIM SKAŻENIU														
Warszawa (województwo)	23	bez blokady	4.1	2.7	0.8	11.0								
Warszawa (województwo)		30.04.86	10.7	5.4	6.2	22.7	46							
Warszawa (miasto)	74	bez blokady	2.8	1.7	0.6	9.9	0							
Warszawa (miasto)	83	29.04.86	1.9	1.3	0.3	4.8	32							
Warszawa (miasto)	132	30.04.86	2.4	1.6	0.4	10.3	12							
Warszawa (miasto)	27	1.05.87	2.7	2.5	0.6	9.7	2							
Suwałki (województwo)	5	30.04.86	5.3	4.3	1.2	14.7								
Siedlce (województwo)	2	bez blokady	7.9	1.5	6.4	9.5								
Olsztyn (województwo)	6	bez blokady	7.8	2.9	2.5	11.3								
Toruń (województwo)	7	bez blokady	7.4	2.6	2.2	10.3								
REJON O NISKIM SKAŻENIU														
Gdańsk (województwo)	99	bez blokady	1.3	0.8	0.1	4.5								
Poznań (województwo)	8	bez blokady	2.2	0.8	1	3.6								

Tabela 5.4.8—1. Dawka obciążająca na tarczycę określona na podstawie pomiarów zawartości I-131 w tarczycy osób dorosłych.

REJON	Liczba Data		Średnia d H ₅₀ ±S	lawka SD	Zal	Redukcja dawki H50				
	pomiarow	blokady	[mSv	/]	min	max	[%]			
REJON O WYSOKIM SKAŻENIU										
Łomża (województwo)	3	30.04.86	51	27.6	18.1	85.6				
Ostrołęka (województwo)	5	30.04.86	55.8	39.6	22.7	105.1				
Ostrołęka (miasto)	7	30.04.86	30.4	10.0	12.7	46.7				
Białystok (województwo)	73	30.04.86	19.3	9.8	6.8	65.6				
	RE	JON O ŚREI	DNIM SKA	ŻENI	U					
Warszawa	8	30.04.86	10.7	5.4	6.2	22.7				
(województwo)										
Warszawa (miasto)	10	29.04.86	4.6	2.6	2.6	10.3				
Warszawa (miasto)	23	30.04.86	6.9	3.7	3.4	18.3				
Suwałki (województwo)	2	30.04.86	4.3	0. 7	3.6	5.0				
REJON O NISKIM SKAŻENIU										
Gdańsk (województwo)	10	30.04.86	3.9	1.5	2	6.9				

Tabela 5.4.8—2. Dawka obciążająca na tarczycę określona na podstawie pomiarów zawartości I-131 w tarczycy dzieci i młodzieży (10-15 lat)

Tabela 5.4.8—3. Dawka obciążająca na tarczycę określona na podstawie pomiarów zawartości ¹³¹I w tarczycy dzieci (5-10 lat)

REJON	Liczba	Data	Średnia dawka	± SD	Zakres		Redukcja dawki H₅o				
	pomiarów	blokady	\mathbf{H}_{50}		min	max	[%]				
REJON O WYSOKIM SKAŻENIU											
Łomża (województwo)	1	30.04.86	54.6								
Ostrołęka (województwo)	14	30.04.86	72.5	55.6	19.4	203.0					
Ostrołęka (miasto)	5	30.04.86	26	14.0	10.3	54.9					
Białystok (województwo)	60	30.04.86	15.5	7.2	4.5	43.0					
REJON O ŚREDNIM SKAŻENIU											
Warszawa (województwo)	5	30.04.86	8.8	6.6	1.9	27.0					
Warszawa (miasto)	2	bez blokady	9.8	1.3	8.5	11.2	0				
Warszawa (miasto)	18	29.04.86	5.4	3.1	1.7	13.7	45				
Warszawa (miasto)	67	30.04.86	7	4.0	1.5	19.3	41				
Suwałki (województwo)	2	30.04.86	8.1	4.2	9.4	14.4					
Siedlce (województwo)	1	bez blokady	28.4								
Toruń(województwo)	1	bez blokady	17.5								
REJON O NISKIM SKAŻENIU											
Gdańsk (województwo)	20	30.04.86	2.9	1.3	0.7	4.9					
Skierniewice (miasto)	1	4.2									

REJON	Liczba pomiarów	Data blokady	Średnia dawka H ₅₀ ± SD [mSv]		ednia dawka Zakres		Redukcja dawki H-o			
	-	DIOKAUy			min	max	[%]			
	REJON O WYSOKIM SKAŻENIU									
Ostrołęka (województwo)	18	30.04.86	63.4	<i>69.4</i>	11.4	217.6				
Ostrołęka (miasto)	13	30.04.86	31.1	14.4	13.3	54.1				
Białystok (województwo)	19	30.04.86	19.6	16.9	3.1	64.0				
	REJON	O ŚREDNIM	SKAŻENI	U						
Warszawa (województwo)	20	30.04.86	10.9	8.6	0.7	43.0				
Warszawa (miasto)	10	29.04.86	4.8	2.4	1	9.7				
Warszawa (miasto)	52	30.04.86	8.4	6.6	0.7	27.8				
Suwałki (województwo)	5	30.04.86	19.1	17.3	2.5	47.3				
Siedlce (województwo)	2	30.04.86	23.2	2.3	21	25.5				
REJON O NISKIM SKAŻENIU										
Gdańsk (województwo)	12	30.04.86	3.3	1.7	1.3	7.9				
Skierniewice (miasto)	2	30.04.86	2.4	2.2	0.2	4.6				

Tabela 5.4.8—4. Dawka obciążająca na tarczycę określona na podstawie pomiarów zawartości I-131 w tarczycy dzieci (1-5 lat)

5.5. WERYFIKACJA MODELU CLRP NA PODSTAWIE POMIARÓW CEZU ¹³⁴CS i ¹³⁷CS W Polsce

5.5.1 Dane pomiarowe stężenia ¹³⁴Cs i ¹³⁷Cs w powietrzu

Punktem wyjściowym do dalszych obliczeń modelu i jego weryfikacji z pomiarami opadu, skażenia powierzchni ziemi, roślinności mleka i mięsa były dane pomiarowe stężenia ¹³⁴Cs i ¹³⁷Cs w powietrzu oraz informacje o warunkach atmosferycznych panujących nad danym obszarem (Tabela 5.5.1—1).

Średnie dzienne pomiarów stężenia ¹³⁴Cs, ¹³⁷Cs w powietrzu obliczono z pomiarów chwilowych, wykonywanych w Centralnym Laboratorium Ochrony Radiologicznej *[148]*. Cez oznaczano we frakcji aerozolowej używając filtru Petrianowa FEP15 o powierzchni 1 m², przy prędkości przepływu powietrza 300 m³ godz⁻¹. W analizie uwzględniano czas poboru próbek powietrza, oraz stosunek ¹³⁷Cs do ¹³⁴Cs. Jako reprezentatywne dane skażeń powietrza ¹³⁷Cs i ¹³⁴Cs przyjęto uśredniony dzienny przebieg stężeń tych radionuklidów obliczony według metodyki podanej w rozdziale 5.4.1. Scałkowane stężenie ¹³⁷Cs w powietrzu wynosiło 18.2 Bq m⁻³ d i było bliskie wcześniejszym oszacowaniom 24.4 Bq m⁻³ d *[153]*. Scałkowane stężenie ¹³⁴ Cs w powietrzu wynosiło 8.8 Bq m⁻³ d ; wcześniejsze opracowania podawały 11.9 Bq m⁻³ d *[153]*. Stosunek scałkowanych stężeń obu radionuklidów wynosił 0.48 i był bliski wartości podanej w Raporcie WHO *[67]*.

	Skażenie	powietrza	Parametry opisujące rozkład aerozolu		Warunki atmosferyczne				
Data	Stężenie ¹³⁴ Cs [Bq/m ³]	Stężenia ¹³⁷ Cs [Bq/m ³]	Średnia E(D _{ae}) [µm]	Odchylenie Standardowe SD(D _{ae}) [µm]	Wysokość warstwy mieszania [km]	Prędkość wiatru [m/s]	Intensywność opadu [mm/h]	Wielkość opadu [mm]	
28-kwi-86	1.08E+00	2.31E+00	0.50	3.00	1.0	1.54	0.00	0.00	
29-kwi-86	3.50E+00	7.00E+00	0.50	3.00	1.0	2.00	0.13	0.87	
30-kwi-86	3.36E+00	7.09E+00	0.50	3.00	1.0	2.00	0.01	0.04	
01-maj-86	1.54E-01	3.16E-01	0.50	3.00	1.0	2.00	0.00	0.00	
02-maj-86	4.21E-02	6.61E-02	0.50	3.00	1.0	2.00	0.00	0.00	
03-maj-86	3.28E-02	1.61E-02	0.50	3.00	1.0	2.00	0.00	0.00	
04-maj-86	1.54E-02	3.06E-02	0.50	3.00	1.0	2.00	0.00	0.00	
05-maj-86	1.14E-02	1.19E-02	0.50	3.00	1.0	2.00	0.00	0.00	
06-maj-86	7.84E-03	1.08E-02	0.50	3.00	1.0	2.00	0.00	0.00	
07-maj-86	2.39E-01	5.75E-01	0.50	3.00	1.0	2.00	0.00	0.00	
08-maj-86	3.00E-01	6.65E-01	0.50	3.00	1.0	3.80	0.20	2.52	
09-maj-86	3.71E-02	8.48E-02	0.50	3.00	1.0	5.00	0.50	4.53	
10-maj-86	5.52E-04	1.40E-03	0.50	3.00	1.0	5.00	0.26	2.07	
11-maj-86	5.66E-04	1.33E-03	0.50	3.00	1.0	5.00	0.66	5.29	
12-maj-86	5.35E-04	1.30E-03	0.50	3.00	1.0	5.00	0.67	6.04	
13-maj-86	5.00E-04	1.30E-03	0.50	3.00	1.0	5.00	0.50	12.95	
14-maj-86	5.00E-04	1.30E-03	0.50	3.00	1.0	5.00	0.50	15.00	
15-maj-86	5.00E-04	1.30E-03	0.50	3.00	1.0	5.00	0.50	15.00	
16-maj-86	8.99E-04	2.15E-03	0.50	3.00	1.0	3.01	0.25	7.53	
17-maj-86	1.30E-03	3.00E-03	0.50	3.00	1.0	1.00	0.00	0.00	
18-maj-86	1.30E-03	3.00E-03	0.50	3.00	1.0	1.00	0.00	0.00	
19-maj-86	1.30E-03	3.00E-03	0.50	3.00	1.0	1.00	0.00	0.00	
20-maj-86	1.17E-03	2.66E-03	0.50	3.00	1.0	2.71	0.04	1.28	
21-maj-86	1.00E-03	2.20E-03	0.50	3.00	1.0	5.00	0.10	3.00	
22-maj-86	1.00E-03	2.20E-03	0.50	3.00	1.0	5.00	0.10	3.00	
23-maj-86	1.00E-03	2.20E-03	0.50	3.00	1.0	5.00	0.10	3.00	
24-maj-86	8.99E-04	1.98E-03	0.50	3.00	1.0	5.00	0.17	8.05	
25-maj-86	4.60E-04	1.00E-03	0.50	3.00	1.0	5.00	0.50	30.00	
26-maj-86	4.60E-04	1.00E-03	0.50	3.00	1.0	5.00	0.50	30.00	
27-maj-86	4.60E-04	1.00E-03	0.50	3.00	1.0	5.00	0.50	30.00	
28-maj-86	4.60E-04	1.00E-03	0.50	3.00	1.0	5.00	0.50	30.00	
29-maj-86	4.60E-04	1.00E-03	0.50	3.00	1.0	5.00	0.50	30.00	
30-maj-86	4.60E-04	1.00E-03	0.50	3.00	1.0	5.00	0.50	30.00	
31-maj-86	4.60E-04	1.00E-03	0.50	3.00	1.0	5.00	0.50	30.00	

Tabela 5.5.1—1. Średnie dzienne stężenia ¹³⁴Cs i ¹³⁷Cs w powietrzu obliczone na podstawie pomiarów wykonanych w okresie od 28.04 do 31.05 1986. [148]

5.5.2 Depozycja ¹³⁴Cs i ¹³⁷Cs na powierzchnię gruntu

Istotny wpływ na wielkość skażenia powierzchni gruntu miały opady, które wystąpiły lokalnie w Polsce 30-04-1986 (Tabela 5.4.1—2). Do obliczeń przyjęto warunki atmosferyczne panujące w tym czasie w Polsce Centralnej, bez intensywnych opadów deszczów w dniu 30-04-86. Uwzględniono natomiast deszcze w dniach 7-8 maja. W tym okresie wystąpiły większe skażenia powietrza, wynoszące około 0.5-0.7 Bq/m³, były one 10 razy mniejsze niż w okresie 29÷30. 04.1986. W obliczeniach depozycji i skażenia gruntu przyjęto rozkład frakcji aerozolowej ¹³⁷Cs i ¹³⁴Cs według pomiarów przeprowadzonych w Pradze *[9]* i w Monachium-Neuherberg *[161]*.

Średnią Rozkładu Aerozoli E(Dae) wynosiła 0.5 µm z Odchyleniem Standardowym Średniej $SD(D_{ae}) = 3 \mu m$, co daje w rezultacie prędkość osadzania aerozolu na trawie $1.7 \times 10^{-3} m/s$. Wartość ta jest zgodna z zakresem prędkości osadzania aerozolu na trawie $1 \div 2 \times 10^{-3}$ m/s /22/ i iest bliska wartości 1.5×10⁻³ m/s, rekomendowanej przez modele opracowywane dla Europy RODOS [27]. Na podstawie przyjętych założeń otrzymano średni opad całkowity ¹³⁷Cs powstały w wyniku skażeń powietrza nad Polską Wynosił on 3.2 kBq/m² z zakresem 95% przedziału ufności równym 0.74 kBq/m² \div 13.7 kBq/m² (Tabela 5.5.2—1). W powyższej ocenie zakres ufności wynikał z założonej zmienności predkości wiatru i udziału opadu mokrego. Obliczenia modelowe wskazują, że w przypadku wystąpienia opadu deszczu rzędu 10 mm można się spodziewać dodatkowego skażenia gruntu ¹³⁷Cs o około 10 kBq/m² (współczynnik wymywania, tzw. washout ratio wynosi $9 \times 10^4 \div 2 \times 10^5 \text{ [m}_{powietrze}^3/\text{m}_{deszcz}^3$]). Wkład opadów w dniach 8÷9 maj 1986 do skażeń gruntu był mały i wynosił około 5% opadu całkowitego. Otrzymany na podstawie obliczeń modelowych średni opad całkowity ¹³⁴Cs wynosił 1.5 kBg/m² z 95% przedziałem ufności równym 0.35 kBq/m² \div 6.6 kBq/m². Obliczenia modelowe wskazuja, że w przypadku wystapienia opadu 10mm można sie spodziewać dodatkowego skażenia gruntu 134 Cs około 5 kBg/m². Weryfikacja przewidywań modelu na bazie wyników pomiarów dla 137 Cs jest utrudniona ponieważ większość pomiarów skażenia gruntu obejmuje zarówno ¹³⁷Cs pochodzenia czarnobylskiego jak również cez pochodzacy z próbnych wybuchów jadrowych. Pomiary stężenia ¹³⁷Cs w 10 centymetrowej warstwie gleby przeprowadzone w 1989 w 343 punktach rozmieszczonych równomiernie w całej Polsce (stacje IMiGW), dają średnie skażenie gruntu równe 4.26 kBq/m², z 95% przedziałem ufności wynoszącym (3.6÷5.0 kBq/m²) [165]. Zakres wartości pomiarowych mieścił się w granicach od 0.74 kBg/m² do 57.8 kBg/m². Analogiczne oszacowanie przeprowadzone dla ¹³⁴Cs dało średnie skażenie gruntu 2.1 kBq/m² z zakresem 95% przedziału ufności 1.63÷2.74 kBq/m². Zakres wartości pomiarowych mieścił się w granicach od 0.13 kBq/m² do 28 kBq/m². Średnie skażenie gruntu i 95% przedział ufności obliczono przy założeniu o logarytmiczno-normalnego rozkładu wyników. Uwzgledniono poprawka na rozpad ¹³⁷Cs i ¹³⁴Cs na dzień 30.04.1986. Wartości średnie obliczeń modelowych stanowią 75% średnich wartości pomiarowych dla obu izotopów cezu. W latach 1988-1991 przeprowadzono również badania zawartości ¹³⁴Cs i ¹³⁷Cs w glebie pochodzącej z czterech miejscowosci północno-wschodniej Polski /1667. Glebę pobierana z warstwy do głębokości 35 cm. Radionuklidy oznaczano w 2-cm warstwach. Cez promieniotwórczy praktycznie znajdował się w warstwie do 15-20 cm. Pochodził on zarówno z awarii czarnobylskiej jak i z wybuchów jądrowych. Udział opadu czarnobylskiego określono na podstawie stężenia ¹³⁴Cs w kolejnych warstwach gleby, przyjmując, ze stosunek ¹³⁴Cs/¹³⁷Cs wynosił w chwili uwolnienia 0.5. Jeżeli aktywność w danej warstwie przekraczała aktywność wyliczona na podstawie ¹³⁴Cs, to przyjęto, że pochodził on z wybuchów jadrowych. Również w warstwach, w których nie stwierdzono występowania ¹³⁴Cs, ¹³⁷Cs mógł pochodzić jedynie z wybuchów jadrowych. Obliczone na podstawie uzyskanych wyników średnie skażenie gleby było równe 4.6 kBq/m². Zakres wartości średniej z przedziałem ufności 95% wynosił od 4.2 do 5.1 kBq/m², natomiast wartości pomiarowe zawierały się w granicach od 1.7 do 7 kBq/m². Po odjęciu ¹³⁷Cs pochodzącego od wybuchów jądrowych, stwierdzono że depozycja tego radionuklidu po awarii czarnobylskiej wynosiła 2.5 kBq/m2, z zakresem 2.2-2.75 kBq/m2. Wartości te są o 20% niższe niż przewidywane przez model.

Zważywszy jednak, że dopuszczalny błąd przewidywań średniej opadu w tego typu ocenie wynosi 3×P, 1/3×P oraz że kres 95% przedziału ufności przewidywań pokrywa zakres danych pomiarowych dla ¹³⁷Cs i ¹³⁴Cs, można przyjąć że dobór parametrów modelowych był prawidłowy.

Radionuklid	SCAŁKOWANE STĘŻENIE W POWIETRZU[Bqm ⁻³ d]									
	Oblicze	enia Mode	lowe	Osz	P/O					
¹³⁷ Cs	18.2				24.4					
¹³⁴ Cs	8.8					11.	9		0.74	
		S	SKAŻENIE GRUNTU [kBq/m ²]							
		Wartoś	ci przev	vidyv	wane	Wa	P/O			
		Śradnia	95% u	prze fnośc	edział ci	á 1 [.]	95% przedział ufności			
		Steuma	Kres dolny	7	Kres górny	Steullia	Kres dolny	Kres górny		
¹³⁷ Cs (całkowite skażenie)						4.26①	3.61	5.01	0.75	
¹³⁷ Cs (całkowite s	każenie)					4.61	4.18	5.10	0.69	
¹³⁷ Cs (po Czarno	bylski)	3.19	0.74		13.72	2.48	2.23	2.75	1.29	
	Suchy	2.91	0.68		12.49					
	Mokry	0.28	0.065	;	1.21					
¹³⁷ Cs (po wybuchowy)						2.13②	1.88	2.48		
¹³⁴ Cs (całkowite s	każenie)	1.52	0.35		6.58	2.11	2.74	1.63	0.72	
Suchy		1.39	0.32		5.99	1.44	1.32	1.61	1.06	
	Mokry	0.13	0.031		0.588					

Tabela 5.5.2—1.Stężenie ¹³⁷Cs i ¹³⁴Cs w powietrzu i ich przewidywana i zmierzona depozycja na powierzchnię gruntu.

5.5.3 Skażenie trawy - efekt "starzenia się" cezu w glebie.

Przewidywane stężenie ¹³⁷Cs w trawie pastwiskowej przedstawia Tabela 5.5.3—1. Stężenie te obliczono na podstawie depozycji dziennej ¹³⁷Cs (rozdział 5.5.2), przyjmując gęstość pokrywy trawy w okresie 29.04-3.05.1986 równą 0.9 kg/m² św. masy, co przy zawartości masy suchej równej 15% daje współczynnik zatrzymywania opadu suchego 0.3, liczony według formuły Chamberlaine'a (rozdział 4.3.3). Połowiczny okres spadku stężenia radionuklidu w trawie, w wyniku procesów pogodowych przyjęto jako równy 14 dni (z korektą na rozpad). Wartość ta mieściła się w zakresie 11÷24 dni podawanym w badaniach po awarii w Czarnobylu

① Oszacowanie na bazie pomiarów 1989 r [165].

^② Oszacowanie na bazie pomiarów własnych w latach 1988-1991 [166].

[37], [21]. Osobne zagadnienie stanowiło określenie zmniejszającej się w czasie frakcji cezu przyswajanego przez rośliny na skutek procesu wiązania się cezu z glebą (ageing effect –efekt starzenia). Widocznym tego efektem jest powolny spadek stężenia ¹³⁷Cs w mleku. Wiadomo, że mechanizmy wiązania cezu w glebie zależą od szeregu właściwości fizycznych i chemicznych gleby i są przedmiotem licznych badań. W oszacowaniu pozornego zaniku ¹³⁷Cs w środowisku wykorzystano pomiary stężenia ¹³⁷Cs+¹³⁴Cs w mleku, prowadzone przez Służbę Pomiarów Skażeń Promieniotwórczych SPSP w latach 1987-1996 *[162], [163], [164].* Jako początek okresu wybrano czerwiec –1987, gdyż po tej dacie okresie można założyć brak udziału w karmie krów wysoko skażonego siana ze zbiorów w 1986. Udział ¹³⁷Cs w sumarycznej aktywności ¹³⁷Cs+¹³⁴Cs określono na podstawie stosunku ¹³⁷Cs/¹³⁴Cs równym 2. Wyliczono średnie miesięczne oraz 95% przedział ufności dla stężeń ¹³⁷Cs w mleku z obszaru całej Polski. Dla obliczonych średnich oraz dolnego i górnego przedziału ufności dopasowano dwuskładnikową funkcję wykładniczą postaci :

$$C_{mleko}^{Cs-137}(t) = A \times \left\{ \alpha \times \exp\left[-\frac{\ln(2)}{T_{1/2}^{szybka}} \times t\right] + (1-\alpha) \times \exp\left[-\frac{\ln(2)}{T_{1/2}^{wo \ln a}} \times t\right) \right\}$$

gdzie:

 $\begin{array}{ll} C^{\text{Cs-137}}{}_{\text{mleko}}(t) &- \text{średnie stężenie} \, ^{137}\text{Cs w mleku [Bq/L]} \\ A &- \text{amplituda funkcji dopasowania danych} \\ \alpha &- \text{udział składowej szybkiej} \\ 1\text{-}\alpha &- \text{udział składowej wolnej} \\ T_{\frac{1}{2}}^{\text{szybka}} &- \text{czas połowicznego zaniku stałej szybkiej} \\ T_{\frac{1}{2}}^{\text{wolna}} &- \text{czas połowicznego zaniku stałej wolnej} \end{array}$

Wyniki obliczeń przedstawia Tabela 5.5.3—3 i Rysunek 5.5.3—3.

Otrzymano okres połowicznego zaniku składowej szybkiej $T^{szybka}_{1/2} = 0.7$ lat z udziałem równym 68%, oraz okres połowicznego zaniku składowej wolnej $T^{wolna}_{1/2} = 15.4$ lat z udziałem równym 32%. Współczynnik dopasowania wynosił 0.96. Podobne wartości otrzymano dla dopasowania dolnego i górnego kresu 95% przedziału ufności średnich: $T^{szybka}_{1/2}$ 0.68 lat, 65%; $T^{wolna}_{1/2}$ 17.8 lat, 35% i $T^{szybka}_{1/2}$ 0.73 lat; 71%, $T^{wolna}_{1/2}$ 13.7 lat, 29%. Otrzymane wartości są średnimi dla obszaru całej Polski i mogą różnić się dla miejsc o wyraźnie różnych właściwościach gleby.

Półokres pozornego zaniku cezu w glebie może się zmieniać w zależności od typu gleby, warunków klimatycznych, zawartości i rozkładu substancji organicznych w profilu pionowym

gleby. W pracach różnych autorów czas ten podawany jest przy założeniu jednoskładnikowej funkcji wykładniczej i wynosi 10 lat [86]). Prace innych autorów wskazują na krótszy czas połowicznego wiązania cezu w glebie (2.6 $2 \div 3$ lata [88]), (T_{1/2} =1.29 lat dla gleby piaszczystej, T_{1/2} =0.6 dla gliniastej [90]). Ostatnie prace prowadzone w ramach programu SAVE (Spatial Analysis of Vulnerable Ecosystems in Europe) wskazują na dwuskładnikową zależność zaniku cezu przyswajalnego przez rośliny. Ocenia się, że składowa szybka ma półokres 0.5-1.5 lat a składowa wolna około 14 lat. Stwierdza się ponad to, że zależność ta jest jednakowa dla różnych typów gleb [91],[92],[93]. W modelu środowiska opracowanym dla Europy RODOS przyjmuje T_{1/2} =8.7 lat dla wszystkich rodzajów gleby [27]. Kilkuset letnie okresy wymywania cezu z gleby są do pominięcia. Przy założeniu dwu składnikowej funkcji wykładniczej opisującej efekt wiązania się cezu w glebie można się spodziewać zależności T_{1/2} od długości przebywania cezu w środowisku, dla którego była robione dopasowanie.

Porównanie przewidywań modelu stężenia ¹³⁷Cs w trawie z danymi pomiarowymi możliwe było do przeprowadzenia dla niewielkiej liczby pomiarów. Wykorzystano pomiary stężenia ¹³⁷Cs, ¹³⁴Cs w trawie przeprowadzone w okresie 1988-1991 oraz maj-195, sierpień-1995 [99]. Próbki trawy pochodziły z terenów o skażeniu gleby zbliżonym do wartości przewidywanych przez model (rozdział 5.5.2). Wyniki porównania prezentuje Tabela 5.5.3—1 oraz Rysunek 5.5.3—1. Średnie wartości pomiarów oraz 95% przedział ufności średniej reprezentują obliczenia z 4 miejsc pomiarowych o rożnych typach gleby.

Wskaźnik niezawodności RI wynosi 2.05 co wskazuje, że około 68% wyników pomiarów zawiera się w zakresie wartości przewidywanych (2×P; 1/2×P). Współczynnik korelacji transformacji log-normalnej wartości przewidywanych i średnich wartości pomiarowych wynosi 0.9 , natomiast współczynnik liniowy logarytmów wynosi 0.75, znaczy to że okres połowicznego zaniku wartości pomiarowych jest krótszy. Kres górny i dolny 95% przedziału ufności przewidywań modelu zawiera się w granicach (2.3×P, 1/ 2.3×P) i obejmuje większość danych pomiarowych (Rysunek 5.4.3—1. czerwona i niebieska linia ciągła). Chociaż przewidywania modelu mieszczą się w dopuszczalnej tolerancji (3×P; 1/3×P) to jednak kres górny 95% przedziału ufności średniej leży powyżej kresu górnego wartości przewidywanych przez model. Podobne wyniki otrzymano dla stężenia ¹³⁴Cs w trawie (Tabela 5.5.3—2, Rysunek 5.5.3—2). Ponieważ współczynnik przechodzenia cezu do trawy wynikający z danych pomiarowych, jest wyższy niż wynika to z obliczeń modelowych, należy przypuszczać, że model przejścia cezu do trawy wymaga dokładniejszego rozróżnienia na jakiej głębokości znajduje się cez w glebie. Założony mnożnik niepewności współczynnika przejścia z gleby do trawy 3 (dla rozkładu logarytmiczno normalnego), nie oddaje zarówno zmienności procesów zachodzących w glebie,

jak również występowania lokalnych różnic w skażeniu gleby. Ponadto weryfikacja przewidywań modelu na bazie pojedynczych serii pomiarów może być tylko zastosowana w celu zorientowania się w rzędzie wielkości przewidywań modelu i nie może służyć do weryfikacji parametrów. Mimo tych ograniczeń, za taką wielkością stężenia ¹³⁷Cs i ¹³⁴Cs w trawie mogą przemawiać porównania z innymi komponentami ekosystemu np. mleka.

	Warto	ści przewid	ywane	Wart			
	[B	sq kg [°] sw. 1	n.j	[Bo	i kgʻsw. m	l.]	P/O
Okres	á 1 ·	95% pr	zedział	95% przedział		zedział	Średnie
	Srednie za	ufności	średniej	Srednie za	Srednie za utności średniej		za okres
	okres	Kres	Kres	okres	Kres	Kres	
		dolny	górny		dolny	górny	
Maj-1986	9.53E+02	4.27E+02	2.13E+03	1.27E+03	1.27E+03	1.27E+03	0.59
Czerwiec-1986	2.13E+02	9.53E+01	4.74E+02				
Lipiec – 1986	4.83E+01	2.17E+01	1.08E+02				
Sierpień 1986	1.14E+01	5.10E+00	2.54E+01				
Wrzesień 1986	3.38E+00	1.52E+00	7.54E+00				
Maj-Wrzesień 1987	3.50E+00	1.57E+00	7.81E+00				
Maj-1988	2.40E+00	1.07E+00	5.34E+00				
Czerwiec-1988	2.41E+00	1.08E+00	5.37E+00	4.08E+00	2.08E+01	8.02E-01	0.59
Lipiec – 1988	2.41E+00	1.08E+00	5.37E+00				
Sierpień 1988	2.41E+00	1.08E+00	5.37E+00				
Wrzesień 1988	2.41E+00	1.08E+00	5.37E+00	5.30E+00	1.73E+01	1.62E+00	0.46
Maj-1989	1.94E+00	8.71E-01	4.33E+00	6.06E+00	4.35E+01	8.46E-01	0.30
Czerwiec-1989	1.95E+00	8.76E-01	4.36E+00				
Lipiec – 1989	1.95E+00	8.76E-01	4.36E+00				
Sierpień 1989	1.95E+00	8.76E-01	4.36E+00				
Wrzesień 1989	1.95E+00	8.76E-01	4.36E+00				
Maj-1990	1.73E+00	7.75E-01	3.86E+00	1.91E+00	3.02E+00	1.21E+00	0.86
Czerwiec-Wrzesień 1990	1.74E+00	7.80E-01	3.88E+00				
Maj-1991	1.61E+00	7.20E-01	3.59E+00	2.66E+00	4.54E+00	1.56E+00	0.57
Czerwiec-Wrzesień 1991	1.62E+00	7.24E-01	3.61E+00				
Maj-Wrzesień 1992	1.52E+00	6.80E-01	3.39E+00				
Maj-Wrzesień 1993	1.45E+00	6.51E-01	3.24E+00				
Maj-Wrzesień 1994	1.38E+00	6.20E-01	3.09E+00				
Mai-1995	1.31E+00	5.89E-01	2.93E+00	5.16E-01	3.00E-01	8.86E-01	2.56
Czerwiec-1995	1.32E+00	5.92E-01	2.95E+00				
Lipiec – 1995	1.32E+00	5 92E-01	2 95E+00				
Sierpień 1995	1.32E+00	5 92E-01	2 95E+00	5 64E-01	3 91E-01	8 14E-01	2 34
Wrzesień 1995	1.32E+00	5 92E-01	2 95E+00	0101201	0001201	0.1.12 01	
Mai-Wrzesień 1996	1.25E+00	5.62E-01	2.79E+00				
Mai-Wrzesień 1997	1 20E+00	5 40E-01	2 69E+00				
Wskaźnik	niezawodn <i>i</i>	ości RI za o	kres mai- 1	986 wrzesień	6 1997 wwn	osi 2 05	
VV SKUZIIIK	We	nółczynnik	korelacii le	9.00 wizesiei	1 1 <i>771</i> vv y IIV	001 2.00	
	Współcz	vnniki pros	stej Ln(P)=($0.87*\ln(O)+$	0.005		

Tabela 5.5.3—1. Stężenie ¹³⁷Cs w trawie –wartości przewidywane i pomiarowe w okresie maj-1986 – grudzień 1995 r.

Rysunek 5.5.3—1: Porównanie przewidywanego stężenia ¹³⁷Cs w trawie z wartościami pomiarowymi w okresie maj-1986 –grudzień 1995 r.

	Warto	ści przewid	ywane	Warte	P/O					
	[E	бакg sw.i	n.j							
Okres	á 1 ·	95% pr	zedział	á 1 :	95% pi	Średnie				
	Srednie za	ufności średniej		Srednie za	utności	średniej	za okres			
	okres	Kres	Kres	okres	Kres	Kres				
		dolny	górny		dolny	górny				
Maj-1986	4.51E+02	2.02E+02	1.00E+03							
Czerwiec-1986	9.78E+01	4.39E+01	2.18E+02							
Lipiec – 1986	2.17E+01	9.71E+00	4.83E+01							
Sierpień 1986	4.98E+00	2.23E+00	1.11E+01							
Wrzesień 1986	1.46E+00	6.56E-01	3.26E+00							
Maj-Wrzesień 1987	1.25E+00	5.60E-01	2.78E+00							
Maj-1988	6.20E-01	2.78E-01	1.38E+00							
Czerwiec-1988	6.24E-01	2.80E-01	1.39E+00	5.74E+00	4.09E-01	8.07E+01	0.11			
Lipiec – 1988	6.24E-01	2.80E-01	1.39E+00							
Sierpień 1988	6.24E-01	2.80E-01	1.39E+00							
Wrzesień 1988	6.24E-01	2.80E-01	1.39E+00	1.41E+00	2.51E-01	7.87E+00	0.44			
Maj-1989	3.69E-01	1.65E-01	8.21E-01	3.91E+00	7.61E-01	2.01E+01	0.09			
Czerwiec-1989	3.71E-01	1.66E-01	8.26E-01							
Lipiec – 1989	3.71E-01	1.66E-01	8.26E-01							
Sierpień 1989	3.71E-01	1.66E-01	8.26E-01							
Wrzesień 1989	3.71E-01	1.66E-01	8.26E-01	9.06E-01	4.31E-01	1.90E+00	0.41			
Maj-1990	2.40E-01	1.07E-01	5.35E-01	7.82E-01	1.90E-01	3.21E+00	0.29			
Czerwiec-Wrzesień 1990	2.42E-01	1.08E-01	5.38E-01	7.87E-01	1.41E-01	4.40E+00	0.31			
Maj-1991	1.63E-01	7.32E-02	3.64E-01	5.30E-01	2.01E-01	1.40E+00	0.29			
Czerwiec-Wrzesień 1991	1.63E-01	7.32E-02	3.64E-01	7.96E-01	9.29E-02	6.82E+00	0.21			
Wskaźnik	niezawodno	ości RI za o	kres maj- 1	986 wrzesień	i 1997 wyn	osi 1.55				
	Współczynnik korelacji log-norm 0.82									
Współczynniki prostej Ln(P)=0. 63*ln(O)+2.55										

Tabela 5.5.3—2. Stężenie ¹³⁴Cs w trawie –wartości przewidywane i pomiarowe w okresie maj-1986 – grudzień 1991 r.

Rysunek 5.5.3—2. Porównanie przewidywanego stężenia ¹³⁴Cs w trawie z wartościami pomiarowymi w okresie maj-1986 –grudzień 1991 r

Rysunek 5.5.3—3. Stężenie¹³⁷Cs w mleku w Polsce– parametry równania zaniku ¹³⁷Cs w mleku.

Estymata $C_{Cs-137mleko}(t) = A \cdot \left\{ \alpha \exp \left(\frac{1}{2} - \frac{1}{2} \right) \right\}$	$\left[-\frac{\ln(2)}{T_{1/2}^{s}}\cdot t\right]+$	$(1-\alpha)\exp\left[-\right]$	$\frac{\ln(2)}{T_{1/2}^L} \cdot t) \Bigg] \Bigg\}$
Współczynnik dopasowania R^2	0.96	nktów 120	
	Wartości średnie dla rozkładu Logarytmiczn o-normalnego	Kres dolny 95% Przedziału ufności wartości średniej	Kres dolny 95% Przedziału ufności wartości średniej
Amplituda A	4.46	2.91	6.63
Okres połowicznego zaniku stałej szybkiejT ^S _{1/2}	0.71 [lat]	0.65 [lat]	0.73 [lat]
Udział składowej szybkiej α	68%	65%	71%
Okres połowicznego zaniku stałej wolnejT ^L _{1/2}	15.4 [lat]	17.8 [lat]	13.74 [lat]
Udział składowej wolnej (1- α)	32%	35%	29%

Tabela 5.5.3—3. Określenie parametrów równania zaniku stężenia Cs-137 w mleku.

5.5.4 Stężenia ¹³⁴Cs i ¹³⁷Cs w mleku

Weryfikację przewidywań modelu przeprowadzono na bazie pomiarów stężenia ¹³⁷Cs i ¹³⁴Cs w mleku prowadzonych w okresie od 29-kwietnia 1986 roku do grudnia 1996 *[147]*. Dla okresu pomiarowego 29-04-1986 30-06-1986 przeanalizowano 170 pomiarów ¹³⁷Cs. Z tego 63 pomiary ¹³⁷Cs dotyczyły mleka w proszku i sera (zostały przeliczone na mleko płynne według następujących przeliczników mleko/ser: 0.58 [L/kg] ; mleko płynne / mleko w proszku: 0.12[L/kg]. 55 pomiarów ¹³⁴Cs było wykonywane metodą radiochemiczną suma ¹³⁴Cs+¹³⁷Cs i stężenie cezu ¹³⁴Cs było obliczone ze stosunku ¹³⁷Cs/¹³⁴Cs. Przewidywane stężenie ¹³⁷Cs w mleku w okresie 1987-1996 porównano ze stężeniami określonymi przez placówki SPSS . W placówkach tych oznaczono cez promieniotwórczy w 4222 próbkach mleka. Zastosowano procedurę obróbki statystycznej wyników według zaleceń MAEA, omówione w rozdziale "5.1. Zasady weryfikacji". W obliczeniach przewidywanych wartości stężenia ¹³⁷Cs w mleku uwzględniono skład karmy krów Tabela 4.3.4—1. Istotnym czynnikiem gwarantującym poprawność przewidywań jest zmiana stopnia biodostepności• cezu w pierwszych miesiącach po

biodostępność (bioavailability) – termin określający frakcję cezu zawartego w diecie bezpośrednio
przechodzącą z przewodu pokarmowego krowy do krwi i do mleka. Biodostepność cezu określa się w
warunkach kontrolowanego eksperymentu mierząc stężenie ¹³⁷Cs w podawanej paszy i stężenie ¹³⁷Cs-w
mleku w warunkach równowagi.

skażeniu trawy bezpośrednim opadem, gdzie występuje frakcja cezu nierozpuszczalnego, a okresem późniejszym, kiedy cez pobierany przez trawę z gleby charakteryzuje się większym stopniem biodostepności. Prace różnych autorów wskazują, że w opadzie po czarnobylskim znajdowało się 10-30% rozpuszczalnego (biodostepnego cezu) *[101]*. Do obliczeń modelowych przyjęto około 20% rozpuszczalnego cezu w opadzie, daje to współczynnik wzrostu biodostępności w następnych latach równy 4.7.

Przyjęty ekwiwalent funkcji retencji cezu dla mleka wynosił:

współczynnik równowagi: $1.8 \times 10-3 \ [d \ L^{-1}]$ udział składowej szybkiej:68%okres połowicznego zaniku składowej szybkiej:2.3 dniokres połowicznego zaniku składowej wolnej:36.4 dni

Przyjęty współczynnik równowagi mieścił się w dolnym limicie wartości podawanych w literaturze: średnia 5.4×10-3 [d L⁻¹] z zakresem (1.3÷8.8)×10-3 [d L⁻¹] *[36],[37],* oraz 7.9×10-3 [d L⁻¹] z zakresem (1÷27)×10-3 [d L⁻¹] [21]. W modelu środowiska opracowywanego dla Europy RODOS [27] przyjmuje się :

współczynnik równowagi:	3.0×10-3 [d L ⁻¹]
udział składowej szybkiej:	80%
okres połowicznego zaniku składowej szybkiej:	1.5 dni
okres połowicznego zaniku składowej wolnej:	15 dni

Przyjęty współczynnik 1.8x10-3 [d L^{-1}] dawał jednak dobre dopasowanie wartości przewidywanych do pomiarowych. Prawdopodobnie niższy współczynnik przejścia cezu z trawy do mleka spowodowany jest bogatą w trawę dietą krów.

Porównanie przewidywań modelu ze średnimi wartościami pomiarów w okresie maj-1986÷styczeń-1987, gdy dominująca rolę w skażeniu mleka odgrywało skażenie trawy opadem przedstawia Rysunek 5.5.4—1, natomiast porównanie przewidywań modelu ze średnimi wartościami pomiarów w okresie lipiec-1987-grudzień-1996, gdy dominującym źródłem ¹³⁷Cs w mleku jest trawa, do której ¹³⁷Cs przechodzi z gleby Rysunek 5.5.4—2. Średnie miesięczne stężenia ¹³⁷Cs w mleku (wartości przewidywanych i mierzone) w okresie maj-grudzień 1986 oraz średnie wartości roczne za okres 1987-1996 pokazuje Tabela 5.5.4—1.

Wskaźnik niezawodności RI wynosi 1.3 co wskazuje, że około 68% wyników pomiarów zawiera się w zakresie wartości przewidywanych P (1.3×P;1/1.3×P). Współczynnik korelacji transformacji log-normalnej wartości przewidywanych i średnich wartości pomiarowych wynosi 0.91, natomiast współczynnik liniowy logarytmów wynosi 0.88, wskazując, że okres połowicznego zaniku wartości pomiarowych jest bliski okresowi połowicznego zaniku wartości

przewidywanych. Dla pomiarów z całej Polski w okresie 29-04-86 30-06-86 średni okres połowicznego zaniku ¹³⁷Cs w mleku wynosił 20 dni z zakresem 95% przedziału ufności równym 15÷31 i był dłuższy od przyjętego do obliczeń modelowych połowicznego okresu spadku steżenia ¹³⁷Cs w trawie, w wyniku procesów pogodowych, równego 14 dni (rozdział 5.5.3). Może to być wytłumaczone faktem kilkudniowego skażania powietrza jak też udziałem składowej wolnej retencji cezu w mleku. Kres górny i dolny 95% przedziału ufności przewidywań modelu zawiera się w granicach (2.5×P, 1/ 2.5×P) i obejmuje większość danych pomiarowych. Jedynie w miesiącach bezpośrednio po awarii maj, czerwiec lipiec wartości przewidywane przez model są o 1.5 razy większe od obserwowanych wartości średnich. Może to być spowodowane faktem, że w średniej wyników pomiarów pewien udział miało mleko krów nie wypasanych na pastwiskach. Zakaz wypasu krów był tylko częściowo przestrzegany ze względu na brak paszy nieskażonej Przewidywania modelu dobrze określają dynamikę zmian stężenia w mleku po 1 maja 1986, gdy nastąpił wyraźny spadek stężeń ¹³⁷Cs w powietrzu. Największe stężenie ¹³⁷Cs w mleku pojawia się 5 maja i utrzymuje się do 9 maja 1986 z przesunięciem około 5 dni w stosunku do maksymalnego stężenia ¹³⁷Cs w trawie 30-kwietnia ÷ 5 maia 1986r. Steżenie ¹³⁷Cs w trawie pojawia sie z przesunieciem około jednego dnia w stosunku do maksymalnego dziennego stężenia cezu w powietrzu 29-kwietnia-1986 i trwa około 3 dni. Powodem tego przesunięcia jest akumulacja opadu na trawie w wyniku dwudniowego, dość wysokiego stężenia w powietrzu oraz dłuższym czasem utrzymywania się cezu w trawie w porównaniu do jodu. Dłuższe utrzymywanie się wysokich stężeń cezu w mleku spowodowane jest dłuższym czasem retencji cezu w organizmie krów. Po zaniku stężeń ¹³⁷Cs w powietrzu zmniejszanie się skażeń mleka następuje w wyniku usuwania cezu z trawy z półokresem 10-20 dni. Charakterystyczny wzrost skażenia mleka w okresie jesienno-zimowym spowodowany jest karmieniem krów sianem skoszonym w okresie letnim, natomiast spadek stężenia ¹³⁷Cs w mleku obserwowany w następnych kolejnych miesiącach, spowodowany jest zjawiskami zachodzącymi w glebie tzn. powolnym wiązaniem się cezu w glebie i jego przechodzeniem w formę nie przyswajalną przez rośliny.

Podobną zależność czasową otrzymano dla ¹³⁴Cs w mleku (Tabela 5.5.4—2 oraz Rysunek 5.5.4—3). Ponieważ właściwości fizykochemiczne obu radionuklidów są takie same, jedyną różnicę stanowi krótszy okres połowicznego rozpadu ¹³⁴Cs (2.06 lat). Przy dobrej odpowiedzi modelu dla ¹³⁷Cs można się spodziewać nie gorszej odpowiedzi modelu dla ¹³⁴Cs mimo, że ¹³⁴Cs pochodzi jedynie z uwolnień w Czarnobylu i znajduje się raczej w warstwie powierzchniowej gleby. Porównanie wartości przewidywanych i pomiarowych możliwe było do przeprowadzenie w okresie gdy ¹³⁴Cs był dobrze mierzalny, czyli do grudnia 1991r. Wskaźnik niezawodności RI

wynosi 1.44 co wskazuje, że około 68% wyników pomiarów zawiera się w zakresie wartości przewidywanych P (1.44×P;1/1.44×P). Współczynnik korelacji transformacji log-normalnej wartości przewidywanych i średnich wartości pomiarowych wynosi 0.99, natomiast współczynnik liniowy logarytmów wynosi 1.35 co wskazuje, że okres połowicznego zaniku wartości pomiarowych jest nieco dłuższy niż wartości przewidywanych. Trzeba jednak zauważyć, że wyniki w 1991 roku były obciążone dużym błędem pomiarowym. Otrzymanie zgodności przewidywań z danymi pomiarowymi dla mleka może świadczyć o prawidłowych założeniach dotyczących trawy. Znajomość parametrów funkcji retencji mleka oraz udziału frakcji rozpuszczanej (biodostępnej) cezu w momencie awarii jak również w okresie poawaryjnym są krytycznymi parametrami modelu.

	Warto	Wartości przewidywane			Wartości pomiarowe				
		95% pr	zedział		95% pr	95% przedział			
Data	Średnie za	ufności	średniej	Średnie za	ufności średniej		Średnie		
	okres	Kres	Kres	okres	Kres	Kres	za okres		
		dolny	górny		dolny	górny			
Maj-1986	8.96E+01	3.87E+01	2.08E+02	1.05E+02	5.07E+01	2.37E+02	1.64		
Czerwiec-1986	3.28E+01	1.41E+01	7.62E+01	5.08E+01	3.64E+01	8.19E+01	1.46		
Lipiec – 1986	1.32E+01	5.68E+00	3.08E+01	8.98E+00	5.47E+00	1.47E+01	1.46		
Sierpień 1986	6.44E+00	2.73E+00	1.52E+01	7.84E+00	4.40E+00	1.40E+01	0.82		
Wrzesień 1986	3.60E+00	1.50E+00	8.62E+00	5.33E+00	3.97E+00	7.15E+00	0.67		
Październik 1986	4.30E+00	1.80E+00	1.03E+01	3.56E+00	2.47E+00	5.13E+00	1.34		
Listopad 1986	5.66E+00	2.37E+00	1.35E+01	4.95E+00	4.20E+00	5.82E+00	1.14		
Grudzień 1986	5.58E+00	2.34E+00	1.33E+01	6.25E+00	4.86E+00	8.04E+00	0.89		
Rok 1987	3.55E+00	1.50E+00	8.40E+00	4.77E+00	3.34E+00	6.85E+00	0.76		
Rok 1988	1.89E+00	8.13E-01	4.38E+00	2.42E+00	1.62E+00	3.62E+00	0.80		
Rok 1989	1.43E+00	6.16E-01	3.32E+00	1.73E+00	1.19E+00	2.53E+00	0.87		
Rok 1990	1.23E+00	5.29E-01	2.85E+00	1.44E+00	1.03E+00	2.03E+00	0.90		
Rok 1991	1.12E+00	4.83E-01	2.60E+00	1.24E+00	8.92E-01	1.71E+00	0.92		
Rok 1992	1.05E+00	4.51E-01	2.43E+00	1.04E+00	7.87E-01	1.38E+00	1.01		
Rok 1993	9.85E-01	4.24E-01	2.29E+00	1.22E+00	8.80E-01	1.68E+00	0.85		
Rok 1994	9.31E-01	4.01E-01	2.16E+00	9.93E-01	7.46E-01	1.32E+00	0.98		
Rok 1995	8.84E-01	3.81E-01	2.05E+00	9.38E-01	7.30E-01	1.20E+00	0.96		
Rok 1996	8.38E-01	3.61E-01	1.95E+00	9.47E-01	7.08E-01	1.27E+00	0.92		
Wskaźnik	niezawodno	ości RI za o	kres maj- 1	986 grudzie	ń 1996 wy	nosi 1.3			
	Ws	półczynnik	korelacji lo	og-norm 0.91					
	Współc	zynniki pro	stej $Ln(P) =$	0.81*ln(O)-0	0.075				

Tabela 5.5.4—1. Stężenie ¹³⁷Cs w mleku –wartości przewidywane i pomiarowe okresie maj-1986 - grudzień 1996 r

Wskaźnik niezawodności i współczynnik regresji dla transformacji log-normalnej zostały obliczone dla średnich miesięcznych.

Rysunek 5.5.4—1. Porównanie przewidywanego stężenia ¹³⁷Cs w mleku z wartościami pomiarowymi w okresie maj-1986 -styczeń 1987 r

Rysunek 5.5.4—2. Porównanie przewidywanego stężenia ¹³⁷Cs w mleku z wartościami pomiarowymi w okresie maj-1987 -grudzień 1996 r

	Warto	ści przewid	ywane	Warte					
		95% pr	zedział		95% pr	P/O			
Data	Średnie za	ufności średniej		Średnie za	ufności	Średnie			
	okres	Kres	Kres	okres	Kres	Kres	za okres		
		dolny	górny		dolny	górny			
Maj-1986	4.23E+01	1.82E+01	9.81E+01	2.87E+01	1.38E+01	6.37E+01	4.84		
Czerwiec-1986	1.51E+01	6.49E+00	3.50E+01	1.73E+01	1.55E+01	1.92E+01	1.72		
Rok 1987	1.26E+00	5.42E-01	2.91E+00	1.77E+00	2.49E+00	1.26E+00	0.73		
Rok 1988	4.95E-01	2.13E-01	1.15E+00	6.62E-01	9.78E-01	4.49E-01	0.78		
Rok 1989	2.84E-01	1.22E-01	6.61E-01	3.74E-01	5.39E-01	2.61E-01	0.80		
Rok 1990	1.78E-01	7.65E-02	4.13E-01	2.50E-01	3.47E-01	1.81E-01	0.75		
Rok 1991	1.16E-01	4.99E-02	2.70E-01	2.15E-01	3.03E-01	1.52E-01	0.57		
Wskaźnik niezawodności RI za okres maj- 1986 grudzień 1991 wynosi 1.34									
Współczynnik korelacji log-norm 0.93									
	Współcz	ynniki pros	tej Ln(P)=0	$0.92*\ln(O)+0$.0037				

Tabela 5.5.4—2. Porównanie wartości stężenia ¹³⁴Cs w mleku z wartościami pomiarowymi w okresie maj-1986 -grudzień 1991 r

Rysunek 5.5.4—3. Porównanie przewidywanego stężenia ¹³⁴Cs w mleku z wartościami pomiarowymi w okresie maj-1987 -grudzień 1991 r

5.5.5 Stężenie ¹³⁷Cs w mleku owiec

Przeprowadzone porównanie przewidywanego stężenia mleka owiec z wartościami pomiarowymi miało na celu sprawdzenie wiarygodności funkcji retencji mleka dla owiec oraz zbadanie czy duże opady atmosferyczne na południu Polski miały wyraźny wpływ na skażenie mleka ¹³⁷Cs. Pomiary mleka owiec i sera owczego wykonano w czterech miejscowościach na południu Polski: Nowy Targ, Nowy Sącz, Gorlice, Zakopane. W okresie 6-maj÷10-czerwiec 1986 r. Oznaczono ¹³⁷Cs w 53 próbkach mleka, Stężenie cezu w serze owczym przeliczano na mleko ze współczynnikiem 0.68 [Bq/kg ser/Bq/l mleko].

Przyjęty ekwiwalent funkcji retencji cezu dla mleka owiec wynosił:

współczynnik równowagi: $63 \times 10^{-3} [dL^{-1}]$

udział składowej szybkiej:

okres połowicznego zaniku składowej szybkiej: 0.8 dni

okres połowicznego zaniku składowej wolnej: 20 dni

Przyjęty współczynnik równowagi mieścił się w limicie wartości podawanych w literaturze: średnia $58 \times 10-3$ [dL⁻¹] z zakresem (6÷120)×10⁻³ [dL⁻¹] [21]. W modelu środowiska RODOS opracowywanego dla Europy [27] przyjmuje się

80%

80%

współczynnik równowagi: $60.0 \times 10-3 \,[dL^{-1}]$

udział składowej szybkiej:

okres połowicznego zaniku składowej szybkiej: 1.5 dni

okres połowicznego zaniku składowej wolnej: 15 dni

Biodostepność cezu z paszy przyjęto jako równą 15%. Tabela 5.5.5—1 i Rysunek 5.5.5—1 przedstawiają przewidywane i zmierzone stężenie ¹³⁷Cs w owczym mleku. Z porównania wartości przewidywanych z pomiarowymi wynika że wskaźnik niezawodności RI wynosi 1.96 co wskazuje, że około 68% wyników pomiarów zawiera się w zakresie wartości przewidywanych P (2×P;1/2×P). Współczynnik korelacji transformacji log-normalnej wartości przewidywanych i średnich wartości pomiarowych wynosi 0.32, natomiast współczynnik liniowy logarytmów wynosi 0.44 co oznacza, że w przypadku wartości przewidywanych.

Kres górny i dolny 95% przedziału ufności przewidywań modelu zawiera się w granicach (2.5×P, 1/ 2.5×P) i obejmuje 60% danych pomiarowych. Biorąc pod uwagę, że współczynnik równowagi funkcji retencji mleka owiec jest co najmniej dziesięciokrotnie wyższy od współczynnika równowagi w mleku krów, oraz że dzienna karma owiec jest dziesięciokrotnie

mniejsza od karmy krów, zgodność przewidywań z wartościami pomiarowymi w zakresie standardu (3×P/1/3×P) świadczy o prawidłowym doborze parametrów modelu. Przeprowadzone porównanie nie potwierdza podwyższonych skażeń na obszarach, gdzie spadły deszcze 30-04-86.

	Warto	ści przewid	ywane	Warte			
		95% pi	zedział		95% pr	P/O	
Data	Średnie za	ufności	średniej	Średnie za	ufności	średniej	Średnie
	okres	Kres	Kres	okres	Kres	Kres	za okres
		dolny	górny		dolny	górny	
02-maj-86	5.55E-01	2.55E-01	1.21E+00	1.84E+02	1.84E+02	1.84E+02	0.00
06-maj-86	3.27E+02	1.50E+02	7.11E+02	2.74E+02	2.74E+02	2.74E+02	1.20
07-maj-86	3.24E+02	1.49E+02	7.07E+02	1.85E+02	8.57E+01	3.99E+02	1.75
08-maj-86	3.20E+02	1.47E+02	6.96E+02	7.95E+01	7.95E+01	7.95E+01	4.02
09-maj-86	3.11E+02	1.43E+02	6.78E+02	1.14E+02	1.14E+02	1.14E+02	2.74
10-maj-86	3.00E+02	1.38E+02	6.54E+02	1.14E+02	1.14E+02	1.14E+02	2.64
12-maj-86	2.75E+02	1.26E+02	6.00E+02	3.47E+02	2.66E+02	4.54E+02	0.79
14-maj-86	2.51E+02	1.15E+02	5.47E+02	6.26E+02	6.26E+02	6.26E+02	0.40
15-maj-86	2.40E+02	1.10E+02	5.24E+02	5.81E+02	5.81E+02	5.81E+02	0.41
17-maj-86	2.20E+02	1.01E+02	4.79E+02	1.93E+02	1.93E+02	1.93E+02	1.14
20-maj-86	1.92E+02	8.81E+01	4.19E+02	7.84E+01	7.84E+01	7.84E+01	2.45
21-maj-86	1.84E+02	8.45E+01	4.00E+02	3.54E+02	3.54E+02	3.54E+02	0.52
22-maj-86	1.76E+02	8.06E+01	3.84E+02	1.37E+02	1.19E+02	1.57E+02	1.29
24-maj-86	1.61E+02	7.38E+01	3.51E+02	4.41E+01	4.41E+01	4.41E+01	3.65
26-maj-86	1.47E+02	6.76E+01	3.21E+02	1.45E+02	1.05E+02	2.00E+02	1.01
27-maj-86	1.41E+02	6.46E+01	3.07E+02	8.84E+01	5.51E+01	1.42E+02	1.59
28-maj-86	1.35E+02	6.18E+01	2.93E+02	1.19E+02	9.04E+01	1.57E+02	1.13
31-maj-86	1.18E+02	5.41E+01	2.57E+02	1.52E+02	1.52E+02	1.52E+02	0.78
02-cze-86	1.08E+02	4.96E+01	2.35E+02	1.13E+02	8.30E+01	1.53E+02	0.96
03-cze-86	1.03E+02	4.74E+01	2.25E+02	8.23E+01	4.83E+01	1.40E+02	1.25
04-cze-86	9.89E+01	4.54E+01	2.15E+02	2.66E+02	4.85E+01	1.46E+03	0.37
05-cze-86	9.46E+01	4.34E+01	2.06E+02	8.63E+01	7.15E+01	1.04E+02	1.10
06-cze-86	9.05E+01	4.15E+01	1.97E+02	9.17E+01	9.17E+01	9.17E+01	0.99
09-cze-86	7.93E+01	3.64E+01	1.73E+02	2.19E+02	5.42E+01	8.87E+02	0.36
10-cze-86	7.60E+01	3.48E+01	1.66E+02	8.89E+01	6.21E+01	1.27E+02	0.86
11-cze-86	7.27E+01	3.33E+01	1.58E+02	6.35E+01	3.91E+01	1.03E+02	1.14
12-cze-86	6.95E+01	3.19E+01	1.51E+02	7.88E+01	7.08E+01	8.79E+01	0.88
13-cze-86	6.66E+01	3.05E+01	1.45E+02	1.91E+02	1.91E+02	1.91E+02	0.35
16-cze-86	5.85E+01	2.68E+01	1.27E+02	4.12E+01	4.12E+01	4.12E+01	1.42
17-cze-86	5.60E+01	2.57E+01	1.22E+02	2.92E+01	2.14E+01	4.00E+01	1.92
18-cze-86	5.36E+01	2.46E+01	1.17E+02	1.91E+01	1.91E+01	1.91E+01	2.80
26-cze-86	3.80E+01	1.74E+01	8.26E+01	5.59E+01	5.59E+01	5.59E+01	0.68
Wskaźnik	niezawodn	ości RI za c	kres maj- 1	986 grudzień	i 1991 wyn	osi 1.97	
	Ws	półczynnik	korelacji lo	og-norm 0.33			
	Współc	zynniki pro	ostej Ln(P)=	=0.45*ln(O)+	2.74		

Tabela 5.5.5—1. Stężenie ¹³⁷Cs w mleku owiec – wartości przewidywane i pomiarowe w okresie majczerwiec 1987 r

Rysunek 5.5.5—1. Porównanie przewidywanego stężenia ¹³⁷Cs w mleku owiec z wartościami pomiarowymi w okresie maj-czerwiec 1987 r.

5.5.6 Określenie aktywności Cs-134 i Cs-137 w całym ciele

Ostatecznym sprawdzianem modelu było porównanie przewidywanych zawartości ¹³⁷Cs i ¹³⁴Cs w całym ciele człowieka z zawartościami zmierzonymi. Do porównań wykorzystano pomiary zawartości 137Cs i 134Cs w całym ciele dla mieszkańców Warszawy, wykonane w okresie majgrudzień 1986 za pomocą licznika całego ciała (LCC) w Instytucie Energii Atomowej [152] oraz dane o zawartości tych radionuklidów w ciele mieszkańców Warszawy w okresie grudzień 1986÷kwiecień 1988, określone na podstawie analizy zbiorczych próbek moczu [83]. Obliczenia modelowe zawartości ¹³⁷Cs i ¹³⁴Cs w organizmie człowieka prowadzono na podstawie wielkości wchłonieć z pożywieniem tych radionuklidów. W obliczeniach uwzgledniono steżenie ¹³⁷Cs i ¹³⁴Cs w produktach żywnościowych pochodzenia roślinnego i zwierzęcego oraz statystyczne dane o ich spożyciu. Steżenie ¹³⁷Cs i ¹³⁴Cs w produktach żywnościowych obliczano za pomoca modelu, uwzględniając wpływ procesów ich przetwarzania na stężenie radionuklidów w gotowych produktach. Średnie spożycie produktów żywnościowych przez dorosłych mieszkańców Polski centralnej, w różnych okresach 1986 roku przedstawia bela 5.5.6-1. [167]. W obliczeniach uwzględniono stężenie ¹³⁷Cs i ¹³⁴Cs w produktach żywnościowych, których wkład do całodziennego pożywienia jest znaczący, tzn: mleko i produkty mleczne, mięso wołowe, wieprzowe, maka, warzywa itp.

Przyjęty ekwiwalent funkcji retencji cezu w organizmie człowieka wynosił [63]:

współczynnik równowagi:	$143.12 [Bq Bq^{-1} d]$
	··· [·] ·]

udział składowej szybkiej:	10%
----------------------------	-----

okres połowicznego zaniku składowej szybkiej: 2 dni

okres połowicznego zaniku składowej wolnej: 110 dni

Za takim wyborem parametrów funkcji retencji przemawiały badania prowadzone w Polsce. Czas połowicznego zaniku cezu w organizmie człowieka badany w pracy *[109]* dla populacji dziewcząt i chłopców w wieku od 16 do 19 lat wynosił odpowiednio 89 d, 134 d ze średnią 112 d co jest bliskie funkcji retencji rekomendowanej 110 d.

Porównanie przewidywań modelu średnich miesięcznych ze średnimi wartościami miesięcznymi wartości pomiarowymi przedstawia Tabela 5.5.6—2 oraz Rysunek 5.5.6—1.

Wskaźnik niezawodności RI wynosi 1.29, co znaczy, że około 68% wyników pomiarów zawiera się w zakresie wartości przewidywanych P (1.3×P;1/1.3×P). Współczynnik korelacji transformacji log-normalnej wartości przewidywanych i średnich wartości pomiarowych wynosi 0.75 co wskazuje, że model dość dobrze oddaje dynamikę zmian zawartości ¹³⁷Cs w porównaniu z danymi pomiarowymi.

Kres górny i dolny 95% przedziału ufności przewidywań modelu zawiera się w granicach (2.3×P, 1/ 2.3×P) i obejmuje większość danych pomiarowych. Współczynnik ten obejmuje również większość wartości maksymalnych i minimalnych. Podobne wyniki otrzymano porównując wartości przewidywane z pomiarowymi dla zawartości ¹³⁴Cs w całym ciele (Tabela 5.5.6—3, Rysunek 5.5.6—2). Wskaźnik niezawodności RI wynosi 1.78 wskazując, że około 68% wyników pomiarów zawiera się w zakresie wartości przewidywanych P (1.78×P;1/1.78×P). Współczynnik korelacji transformacji log-normalnej wartości przewidywanych i średnich wartości pomiarowych wynosi 0.64, co oznacza że model dość dobrze oddaje dynamikę zmian zawartości ¹³⁴Cs w porównaniu z danymi pomiarowymi.

Kres górny i dolny 95% przedziału ufności przewidywań modelu zawiera się w granicach (2.3×P, 1/ 2.3×P) i obejmuje większość danych pomiarowych. Współczynnik ten obejmuje również większość wartości maksymalnych i minimalnych. Dla początkowych miesięcy trwania skażenia maj, czerwiec, lipiec zaznacza się przeszacowanie wartości przewidywanych w stosunku do średnich wartości pomiarowych zarówno dla ¹³⁷Cs jak i ¹³⁴Cs. Powodem tego może być ograniczona konsumpcja skażonych produktów, nie uwzględniona w obliczeniach modelowych, jak również fakt, że mierzone osoby pochodziły z Warszawy; w Polsce centralnej restrykcje dotyczące wypasu krów były staranniej przestrzegane w porównaniu do innych obszarów Polski.

Weryfikacja modelu odnośnie przewidywań zawartości ¹³⁷ Cs w całym ciele była możliwa do maja-1988, gdyż do tego czasu istniała baza danych pomiarowych. Możliwe było natomiast porównanie przewidywanych rocznych wchłonięć ¹³⁷Cs z pożywieniem z ocenianymi nieprzerwanie w Polsce do chwili obecnej.

			Γ^{3}		Φ	Φ [®] Okresy sezonowej zmiany spozyc		zycia				
Produkt wyjsciowy®	Produkt przetworzony	ΨΨ	cez	jod	Cez	Jod	1 styczeń 30 kwiecień	1 maj 31 lipca	1 sierpień 31 sierpień	1 wrzesień 30 wrzesień	1 paźdz. 31 paźdz.	1 listopad 31 grudzień
PSZENICA OZIMA	pieczywo(pszenne, żytnie, mieszane, ciasta)	2.0	0.5	0.5	0.2	0.2	2.7E-01	2.7E-01	2.7E-01	2.7E-01	2.7E-01	2.7E-01
PSZENICA OZIMA	mąka	0.7	0.3	0.4	<i>0.4</i>	0.6	5.0E-02	5.0E-02	5.0E-02	5.0E-02	5.0E-02	5.0E-02
PSZENICA OZIMA	makaron	2.2	0.9	0.4	<i>0.4</i>	0.2	6.7E-03	6.7E-03	6.7E-03	6.7E-03	6.7E-03	6.7E-03
ŻYTO	kasze, płatki	0.3	0.5	0.5	1.8	<i>1.8</i>	9.0E-03	9.0E-03	9.0E-03	9.0E-03	9.0E-03	9.0E-03
JĘCZMIEŃ	kasze, płatki	0.1	0.4	0.4	3.5	3.5	3.0E-03	3.0E-03	3.0E-03	3.0E-03	3.0E-03	3.0E-03
SAŁATA GRUNTOWA	sałata (myta, usunięcie zewnętrznych liści)	0.7	0.4	0.4	0.6	0.6	0.0E+00	1.0E-03	1.0E-03	1.0E-03	0.0E+00	0.0E+00
SAŁATA SZKLARNIOWA	sałata (myta, usunięcie zewnętrznych liści)	0.8	0.5	0.5	0.6	0.6	2.0E-03	1.0E-03	1.0E-03	1.0E-03	2.0E-03	2.0E-03
SZPINAK	mycie, gotowanie	0.7	0.6	0.7	<i>0.9</i>	1.0	0.0E+00	6.0E-03	6.0E-03	6.0E-03	0.0E+00	0.0E+00
KAPUSTA	kapusta świeża (myta)	0.8	0.9	0.5	1.1	0.6	0.0E+00	0.0E+00	1.5E-02	1.5E-02	0.0E+00	0.0E+00
KAPUSTA	kapusta kiszona	0.7	0.2	0.2	<i>0.3</i>	0.3	2.9E-02	2.9E-02	1.2E-02	1.2E-02	2.9E-02	2.9E-02
KAPUSTA	gotowana	0.7	0.2	0.2	<i>0.3</i>	<i>0.3</i>	0.0E+00	0.0E+00	1.5E-02	1.5E-02	0.0E+00	0.0E+00
MARCHEW	korzeniowe (obieranie, gotowanie)	0.8	0.5	0.5	0.6	0.6	9.0E-02	9.0E-02	9.0E-02	9.0E-02	9.0E-02	9.0E-02
ZIEMNIAKI WCZESNE	ziemniaki wczesne	0.8	0.6	0.6	<i>0.8</i>	0.8	1.6E-01	1.6E-01	3.2E-01	3.2E-01	0.0E+00	0.0E+00
ZIEMNIAKI PÓŹNE	ziemniaki późne	0.8	0.6	0.6	0.8	0.8	1.6E-01	1.6E-01	0.0E+00	0.0E+00	3.2E-01	3.2E-01
POMIDORY	pomidory świeże	1.0	0.7	0.5	<i>0.7</i>	0.5	2.8E-02	2.8E-02	2.8E-02	2.8E-02	0.0E+00	0.0E+00
OGÓRKI	ogórki świeże	0.8	0.5	0.5	0.6	0.6	0.0E+00	0.0E+00	2.4E-02	2.4E-02	0.0E+00	0.0E+00
OGÓRKI	ogórki kwaszone	0.7	0.1	0.1	<i>0.1</i>	<i>0.1</i>	2.4E-02	1.2E-02	1.2E-02	1.2E-02	1.2E-02	2.4E-02

bela 5.5.6—1. Średnie spożycie poszczególnych produktów żywnościowych przez osoby dorosłe w różnych okresach 1986 r.

[©] nazwa przedziału ekosystemu skąd pochodzi produkt wyjściowy

[©] wydajność procesu przetwarzania produktu wyrażona jako masa produktu końcowego do masy surowca [kg kg⁻¹]

 ⁽³⁾ współczynnik retencji (zatrzymywania) pierwiastka wyrażony jako frakcja pierwiastka przechodząca z produktu surowego do produktu przetworzonego
 ^(a) współczynnik przetwarzania wskutek procesów kulinarnych – stosunek stężenia pierwiastka w produkcie przetworzonym do stężenia pierwiastka w produkcie surowym wyrażony stosunkiem Γ/Ψ

			Ι	-	¢	Þ	Okresy sezonowej zmiany spozycia					
Produkt wyjsciowy	Produkt przetworzony	Ψ	cez	jod	Cez	jod	1 styczeń 30 kwiecień	1 maj 31 lipca	1 sierpień 31 sierpień	1 wrzesień 30 wrzesień	1 paźdz. 31 paźdz.	1 listopad 31 grudzień
POMIDORY	przetwory warzywne (marynowane)	0.7	0.1	0.1	0.1	0.1	2.0E-02	2.0E-02	2.0E-02	2.0E-02	2.0E-02	2.0E-02
FASOLA	ziarno roślin strączkowych (mycie, gotowanie)	0.9	0.3	0.2	0.3	0.2	4.0E-03	4.0E-03	4.0E-03	4.0E-03	4.0E-03	4.0E-03
JABŁKA	owoce drzew, krzewów	0.9	0.8	0.8	0.9	<i>0.9</i>	7.0E-02	7.0E-02	7.0E-02	7.0E-02	7.0E-02	7.0E-02
PORZECZKI	owoce drzew, krzewów	0.9	0.8	0.8	<i>0.9</i>	0.9	1.0E-02	1.0E-02	1.0E-02	1.0E-02	1.0E-02	1.0E-02
TRUSKAWKI	owoce jagodowe	1.0	0.8	0.8	<i>0.8</i>	0.8	1.9E-02	1.9E-02	1.9E-02	1.9E-02	0.0E+00	0.0E+00
JABŁKA	przetwory owocowe (kompoty)	0.7	0.4	0.2	0.6	0.3	7.0E-03	7.0E-03	7.0E-03	7.0E-03	7.0E-03	7.0E-03
MLEKO	mleko i napoje mleczne (kefir)	1.0	1.0	1.0	1.0	1.0	3.0E-01	3.0E-01	3.0E-01	3.0E-01	3.0E-01	3.0E-01
MLEKO	sery twarogowe (kwaśne)	0.1	0.1	0.2	0.6	1.7	1.9E-02	1.9E-02	1.9E-02	1.9E-02	1.9E-02	1.9E-02
MLEKO	sery twarde i topione	0.1	0.1	0.2	0.9	2.5	7.0E-03	7.0E-03	7.0E-03	7.0E-03	7.0E-03	7.0E-03
MLEKO	śmietana i śmietanka	0.1	0.1	0.1	0.6	1.3	2.0E-02	2.0E-02	2.0E-02	2.0E-02	2.0E-02	2.0E-02
MLEKO	serwatka	0.8	0.9	0.6	1.1	0.8	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
WOŁOWINA	wołowe (gotowane, duszone, pieczone)	0.7	0.5	0.6	0.7	0.9	1.6E-02	1.6E-02	1.6E-02	1.6E-02	1.6E-02	1.6E-02
WIEPRZOWINA	wieprzowe (gotowane, duszone, pieczone)	0.7	0.5	0.6	0.7	0.9	3.7E-02	3.7E-02	3.7E-02	3.7E-02	3.7E-02	3.7E-02
CIELĘCINA	cielęcina (duszone, pieczone)	0.7	0.5	0.6	0. 7	0.9	2.3E-03	2.3E-03	2.3E-03	2.3E-03	2.3E-03	2.3E-03
WIEPRZOWINA	Przetwory mięsne (szynka, poledwica, baleron, kiełbasy)	1.0	0.7	0.7	0. 7	0. 7	3.9E-02	3.9E-02	3.9E-02	3.9E-02	3.9E-02	3.9E-02
WOŁOWINA (WÓŁ)	Przetwory mięsne (szynka, poledwica, baleron, kiełbasy)	1.0	0.7	0.7	0. 7	0. 7	3.9E-02	3.9E-02	3.9E-02	3.9E-02	3.9E-02	3.9E-02
DRÓB	Kury, koguty, kurczaki	0.7	0.8	0.8	1.1	1.1	3.5E-02	3.5E-02	3.5E-02	3.5E-02	3.5E-02	3.5E-02
JAJKA	Jajka bez skorupki	0.9	0.9	0.9	1.0	1.0	2.6E-02	2.6E-02	2.6E-02	2.6E-02	2.6E-02	2.6E-02

Tabela 5.5.6—1. Średnie spożycie poszczególnych produktów żywnościowych przez osoby dorosłe w różnych okresach 1986 r (kont.).

	Warto	ści przewid	ywane	Warte	owe		
		[Bq]			[Bq]		P/O
Data	,	95% pr	zedział	,	95% pr	Średnie	
Dum	Srednie za	ufności	średniej	Średnie za	ufności	średniej	za okres
	okres	Kres	Kres	okres	Kres	Kres	24 011 02
		dolny	górny		dolny	górny	
Maj-86	4.59E+02	2.00E+02	1.06E+03	3.92E+02	2.26E+02	6.88E+02	1.65
Czerwiec-86	1.04E+03	4.50E+02	2.39E+03	5.16E+02	3.65E+02	7.13E+02	2.09
Lipiec-86	1.27E+03	5.48E+02	2.95E+03	7.18E+02	6.46E+02	7.84E+02	2.01
Sierpień-86	1.42E+03	6.05E+02	3.31E+03	1.01E+03	6.70E+02	1.49E+03	1.46
Wrzesień-86	1.59E+03	6.78E+02	3.70E+03	1.19E+03	7.05E+02	1.93E+03	1.39
Pażdziernik-86	1.67E+03	7.16E+02	3.90E+03	1.46E+03	9.63E+02	2.11E+03	1.16
Listopad-86	1.70E+03	7.30E+02	3.96E+03	1.58E+03	1.12E+03	2.25E+03	1.12
Grudzień-86	1.70E+03	7.32E+02	3.97E+03	1.40E+03	1.24E+03	1.67E+03	1.39
Styczeń-87	1.71E+03	7.34E+02	3.98E+03	1.48E+03	1.13E+03	1.84E+03	1.15
Luty-87	1.72E+03	7.37E+02	3.99E+03	1.79E+03	1.52E+03	2.06E+03	0.96
Marzec-87	1.72E+03	7.37E+02	4.00E+03	1.66E+03	1.40E+03	1.93E+03	1.03
Kwiecień-87	1.71E+03	7.36E+02	3.99E+03	1.54E+03	1.32E+03	1.75E+03	1.11
Maj-87	1.73E+03	7.41E+02	4.03E+03	1.54E+03	1.32E+03	1.75E+03	1.12
Czerwiec-87	1.75E+03	7.49E+02	4.08E+03	1.68E+03	1.56E+03	1.81E+03	1.04
Lipiec-87	1.74E+03	7.45E+02	4.06E+03	1.54E+03	1.41E+03	1.66E+03	1.13
Sierpień-87	1.66E+03	7.31E+02	3.77E+03	9.66E+02	8.41E+02	1.09E+03	1.73
Wrzesień-87	1.51E+03	6.69E+02	3.38E+03	1.41E+03	1.32E+03	1.50E+03	1.07
Pażdziernik-87	1.36E+03	6.08E+02	3.05E+03	1.27E+03	1.20E+03	1.34E+03	1.08
Listopad-87	1.24E+03	5.53E+02	2.77E+03	1.07E+03	9.84E+02	1.16E+03	1.16
Grudzień-87	1.13E+03	5.05E+02	2.52E+03	1.14E+03	1.09E+03	1.20E+03	0.99
Styczeń-88	1.04E+03	4.64E+02	2.32E+03	7.87E+02	7.16E+02	8.59E+02	1.32
Luty-88	9.65E+02	4.32E+02	2.16E+03	1.04E+03	9.84E+02	1.09E+03	0.93
Marzec-88	9.05E+02	4.05E+02	2.02E+03	9.12E+02	8.59E+02	9.66E+02	0.99
Kwiecień-88	8.54E+02	3.82E+02	1.91E+03	7.16E+02	6.62E+02	7.69E+02	1.19
Wskaźnik	niezawodno	ości RI za o	kres maj- 1	986 kwiecień	i 1988 wyn	osi 1.29	
	Ws	półczynnik	korelacji lo	og-norm 0.75	,)		
	Współc [,]	zvnniki pro	stei Ln(P)=	$0.72*\ln(O)+2$	2 096		

Tabela 5.5.6—2. Zawartości ¹³⁷Cs w całym ciele człowieka – wartości przewidywane i pomiarowe w okresie maj-1986 ÷ kwiecień-1989 r.

Rysunek 5.5.6—1. Porównanie przewidywanej zawartości ¹³⁷Cs- w całym ciele człowieka z wartościami pomiarowymi w okresie maj-1987 ÷ kwiecień-1988 r.

okresie inaj-1980 ÷ grudzien-1980 i.									
	Warto	ści przewid	ywane	Warte					
		95% pr	zedział		95% pr	P/O			
Data	Średnie za	ufności średniej		Średnie za	ufności	ufności średniej			
	okres	Kres Kres		okres	Kres	Kres	za okres		
		dolny	górny		dolny	górny			
Maj-86	2.15E+02	9.14E+01	5.06E+02	1.32E+02	7.67E+01	2.47E+02	2.14		
Czerwiec-86	4.75E+02	2.02E+02	1.12E+03	2.23E+02	1.52E+02	3.16E+02	2.29		
Lipiec-86	5.66E+02	2.40E+02	1.33E+03	2.86E+02	2.50E+02	3.22E+02	2.21		
Sierpień-86	6.12E+02	2.60E+02	1.44E+03	4.26E+02	2.76E+02	6.34E+02	1.53		
Wrzesień-86	6.66E+02	2.83E+02	1.57E+03	4.77E+02	3.60E+02	7.33E+02	1.56		
Pażdziernik-86	6.82E+02	2.90E+02	1.61E+03	6.01E+02	4.03E+02	8.69E+02	1.15		
Listopad-86	6.75E+02	2.86E+02	1.59E+03	6.53E+02	4.86E+02	9.21E+02	1.08		
Grudzień-86	6.58E+02	2.79E+02	1.55E+03	5.73E+02	5.29E+02	6.78E+02	1.35		
Wskaźn	Wskaźnik niezawodności RI za okres maj- grudzień 1986 wynosi 1.78								
	Współczynnik korelacji log-norm 0.0.64								
	Współc	zynniki pro	ostej Ln(P)=	=0.37*ln(O)+	4.11				

Tabela 5.5.6—3. Zawartość ¹³⁴Cs w całym ciele człowieka - wartościami przewidywane i pomiarowe w okresie maj-1986 ÷ grudzień-1986 r.

Rysunek 5.5.6—2. Porównanie przewidywanych zawartości ¹³⁴Cs w całym ciele człowieka z wartościami pomiarowymi w okresie maj ÷ grudzień-1986 r.

5.5.7 Dawki skuteczne dla ludności Polski po awarii czarnobylskiej od ¹³⁷Cs i ¹³⁴Cs

Roczne skuteczne dawki obciążające[®] od ¹³⁷Cs i ¹³⁴Cs w latach 1986-1996 oraz skuteczne dawki obciążające w okresie całego życia (dawka życiowa) obliczone zostały za pomocą modelu CLRP i ocenione na podstawie danych pomiarowych (Tabela 5.5.7-1 oraz Tabela 5.5.7—3). Dawki określone za pomoca modelu oszacowano na podstawie obliczonych zawartości radionuklidów w całym ciele człowieka (Rozdział 5.5.6) i współczynników przeliczeniowych (Tabela 4.3.10-2), natomiast dla określenia dawek na podstawie pomiarów posłużono się zawartością radionuklidów w ciele człowieka ocenioną z ich wchłonięć z pożywieniem [168], pomiarów LCC i ocen przeprowadzonych na podstawie analizy produktów żywnościowych i zbiorczych próbek moczu [153], a także na podstawie wchłonięć radionuklidów z pożywieniem, dokonanych na bazie monitoringu skażeń artykułów żywnościowych [162], [163], [164] i współczynników przeliczeniowych (Sv Bq⁻¹) stosowanych w przypadku wchłonięć radionuklidu drogą pokarmową /105/. Dawki obliczone za pomocą modelu CLRP wykazują dobra zgodność z dawkami opartymi na danych pomiarowych. Jedynie dawka życiowa od ¹³⁷Cs (320µ) oceniona przez K. Żarnowieckiego w 1987 roku [153] była o około 50% wyższa niż dawka przewidywana przez model (200 μSv); ocena ta była dokonana w 1987 roku przy założeniu, że półokres środowiskowy ¹³⁷Cs wynosi 3 lata. Większą zgodność uzyskano dla ¹³⁴Cs; według modelu dawka ta wynosi około 68 uSy, natomiast w pracy [153] oceniono ja jako równa 80 µSv.

Dawki skuteczne[®] z wyszczególnieniem poszczególnych dróg narażenia: napromieniania zewnętrznego od chmury radioaktywnej oraz od skażenia powierzchni ziemi, napromieniania

$$E(\tau) = \sum_{T} w_{T} H_{T}(\tau)$$

$$E = \sum_{T} w_{T} H_{T} = \sum_{T} w_{T} \sum_{R} w_{R} D_{T,R}$$

gdzie:

 $^{^{\}circ}$ Skuteczna dawka obciążająca E(τ): (ang. Committed effective dose) suma równoważnych dawek obciążających w pojedynczych narządach lub tkankach, będących wynikiem wniknięcia substancji promieniotwórczych do organizmu, przy czym każdy składnik sumy jest pomnożony przez odpowiedni współczynnik wagowy tkanki, w_T. Jest to wielkość zdefiniowana jako:

Przy wyznaczaniu $E(\tau)$ wielkość τ oznacza liczbę lat okresu objętego całkowaniem. Jednostką skutecznej dawki obciążającej jest siewert (Sv) [105].

[©] Dawka skuteczna E: (ang. Effective dose) suma dawek równoważnych od napromienienia zewnętrznego i wewnętrznego we wszystkich tkankach i narządach z uwzględnieniem odpowiednich współczynników wagowych, zdefiniowana wyrażeniem:

 $D_{T,R}$ - oznacza dawkę pochłoniętą, związana z promieniowaniem R, uśrednioną w tkance lub narządzie T, w_R – jest współczynnikiem wagowym promieniowania R,

w_T – jest współczynnikem wagowym narządu lub tkanki T) [105].

wewnętrznego od wdychania skażonego powietrza i od spożywania skażonych pokarmów obliczone za pomocą modelu i danych pomiarowych *[153]* dla ¹³⁷Cs przedstawia Tabela 5.5.7—2 oraz dla ¹³⁴Cs Tabela 5.5.7—4. Wyraźniejsze różnice wystąpiły w ocenie dawki od zdeponowanego ¹³⁷Cs na powierzchni gruntu (model 243 μ Sv, ocena K. Żarnowieckiego 286 μ Sv *[153]* i od dawki inhalacyjnej (model- 2.74 μ Sv, ocena K. Żarnowieckiego- 0.22 μ Sv). W podsumowaniu można stwierdzić, że dawki obliczone przy pomocy modelu CLRP, który wychodzi z wartości zmierzonych stężeń ¹³⁷Cs i ¹³⁴Cs w powietrzu oraz warunków atmosferycznych, zgadzają się z innymi niezależnymi ocenami wykorzystującymi wartości pomiarowe w zakresie (1.5×P, 1/1.5×P).

	Roczne skuteczne dawki obciążające od ¹³⁷ Cs E(1 rok) [µSv]									
Rok	MODEL CLRP	Na podstawie pomiaru skażeń produktów żywnościowych [162], [163], [164]	Na podstawie zawartości ¹³⁷ Cs w całym ciele ocenionej z wchłonięć z pożywieniem	Na podstawie pomiarów ¹³⁷ Cs LCC i próbek moczu [153]						
1986	53.8	54	61	55						
1987	49.2	28	39	50						
1988	22	13	30							
1989	12	12	18							
1990	9	12	15							
1991	8	11	11							
1992	6	8								
1993	6	6								
1994	5	7								
1995	5	7								
1996	4	8								
Suma dawek za okres 1986-1996	176	166								

Tabela 5.5.7—1. Roczne skuteczne dawki obciążające od ¹³⁷Cs – przewidywane i obliczone z danych pomiarowych.

Tabela 5.5.7—2. Dawki skuteczne od ¹³⁷Cs z uwzględnieniem wkładu poszczególnych dróg narażenia– przewidywane i obliczone z danych pomiarowych.

Dawki skuteczne od ¹³⁷ Cs [µSv]									
Ocena	napromienianie zewnętrzne		napromienianie wewnętrzne		Callcowita				
	od chmury radioaktywnej	od skażenia powierzchni ziemi	od wdychania skażonego powietrza	od spożywania skażonych pokarmów (dawka życiowa E ₅₀)	dawka skuteczna				
Model CLRP	0.0163	243	3.76	208	455				
[153]	-	286	0.32	320	606				
[168]	-	-	-	204					
[164]				196					

politicon gon							
	Roczne skuteczne dawki obciążające od ¹³⁴ Cs E(1 rok) [µSv]						
			Na podstawie				
	MODEL	Na podstawie	zawartości ¹³⁷ Cs w	Na podstawie			
Rok		pomiaru skażeń	całym ciele	pomiarów ¹³⁷ Cs			
	CLRP	produktów	ocenionej z	LCC i próbek			
		żywnościowych	wchłonięć z	moczu			
		[162], [163], [164]	pożywieniem	[153]			
			[168]				
1986	32.8	34	37	28			
1987	21.4	13	22	22			
1988	5.9	4	15				
1989	2.9	3	4				
1990	1.7	2	3				
1991	1	2	1				
1992	0.7	1					
1993	0.4	1					
1994	0.3	1					
1995	0.2	1					
Suma dawek za okres	67.3	62					
1986-1996							

Tabela 5.5.7—3. Roczne skuteczne dawki obciążające od ¹³⁴Cs – przewidywane i obliczone z danych pomiarowych.

Tabela 5.5.7—4. Dawki skuteczne od ¹³⁷Cs z uwzględnieniem wkładu poszczególnych dróg narażenia– przewidywane i obliczone z danych pomiarowych.

Dawki skuteczne od 134 Cs [μ Sv]										
Ocena	napromienianie zewnętrzne		napromienianie wewnętrzne		Calkowita					
	od chmury radioaktywnej	od skażenia powierzchni ziemi	od wdychania skażonego powietrza	od spożywania skażonych pokarmów (dawka życiowa E ₅₀)	dawka skuteczna					
Model CLRP	0.0357	35	2.74	67.6	105					
[153]	-	34	0.22	80	114					
[168]	-	-	-	83						
[164]	-	-	-	62						

6 OMÓWIENIE WYNIKÓW I PODSUMOWANIE

- 1 Opracowano procedury obliczeniowe opisujące transport jodu i cezu w środowisku lądowym człowieka i przeprowadzono ich weryfikację. Przy opracowywaniu modelu uwzględniono przechodzenie radionuklidów z warstwy przyziemnej powietrza po przez łańcuch pokarmowy do narządów krytycznych dla różnych grup wiekowych ludności.
- Opracowano procedury obliczeniowe do oceny dawek w wybranym przedziale czasowym od ekspozycji zewnętrznej (od chmury na podstawie danych o stężeniu danego radionuklidu w powietrzu oraz od gruntu na podstawie obliczonych wartości opadu całkowitego danego izotopu na powierzchnię ziemi), inhalacji (na podstawie danych o stężeniu danego radionuklidu w powietrzu) oraz dawek od skażeń pokarmowych na podstawie obliczanych zawartości radionuklidów w całym ciele (izotopy cezu) lub w narządzie krytycznym (jod promieniotwórczy w tarczycy) oraz przeprowadzono ich weryfikację.
- 3 W matematycznym opisie zjawisk fizycznych odpowiedzialnych za przechodzenie radionuklidów z różnych komponentów ekosystemu wykorzystano formuły podane w literaturze bądź też posłużono się rozwiązaniami własnymi. Matematyczne algorytmy modelu zostały zapisane w formie komputerowego kodu (CLRP) napisanego w języku Visual Basic ver.5 jako tzw. Aplikacja Ad-In. Kod ten składa się z okien dialogowych i programów umożliwiających wymianę informacji z tzw. Plikiem Scenariusza, który jest zbiorem arkuszy kalkulacyjnych Excel 5.0.
- 4 Przeprowadzono standardowe testy polegające na sprawdzeniu zastosowanych procedur obliczeniowych na bazie prostych teoretycznych scenariuszy dotyczących przejścia z jednego przedziału środowiska do drugiego, np. przejścia z powietrza do gleby, przejścia z trawy do mleka, przejścia od wchłonięcia radionuklidu do jego zawartości w tkankach. W tego typu testach sprawdzano również prawidłowość odpowiedzi modelu dla różnych zależności czasowych "wejść" radionuklidu do testowanego przedziału (jednorazowych, ciągłych bądź mieszanych).

- 5 Przeprowadzono modyfikacje procedur obliczeniowych oraz weryfikację modelu w oparciu o dostępne dane (scenariusze) międzynarodowych programów testowania modeli. Scenariusze te dotyczyły skażeń ¹³⁷Cs lub ¹³¹I dwóch krajów sąsiadujących z Polską o podobnej strukturze agrotechnicznej i warunkach klimatycznych (Czechy i Niemcy), oraz dwóch krajów o odmiennej strukturze agrotechnicznej i warunkach klimatycznych (Finlandia i USA). Międzynarodowe testy modelu pokazały że:
 - 5.1 Kod CLRP spełniał wymagane warunki przewidywania poziomów stężeń w poszczególnych komponentach ekosystemu i dawek. Przewidywane przez model wartości mieściły się w zakresie mniejszym niż (3×P; 1/3×P) w stosunku do wartości pomiarowych oraz dawek szacowanych przez niezależnych ekspertów.
 - 5.2 W przypadku regionów o różnych warunkach klimatycznych i odmiennej strukturze produkcji rolnej, zastosowanie parametrów charakterystycznych dla danego regionu zapewniało zgodność przewidywań modelu z wartościami pomiarowymi. Do przewidywania wielkości opadu radioaktywnego konieczne są dane o warunkach meteorologicznych, zwłaszcza opadów deszczu, oraz dane o postaci fizykochemicznej jodu, jak również informacje o rozkładzie aktywności radionuklidu w zależności od średnicy aerozolu.
- 6 W wyniku przeprowadzonych porównań ustalono parametry modelu mające wpływ na ość wartości przewidywanych skażeń i dawek:
 - 6.1 parametry określające dane początkowe do obliczeń modelowych: procentowy skład postaci fizykochemicznych jodu występujących w powietrzu, skład fizykochemiczny cezu w opadzie radioaktywnym, a zwłaszcza jego część rozpuszczalna, rozkład frakcji aerozolu w powietrzu, warunki atmosferyczne (prędkość wiatru, deszcze);
 - 6.2 parametry charakterystyczne dla rejonu, dla którego prowadzone są przewidywania: terminy początku i maksymalnego wzrostu oraz zbioru roślin; typ gleby wpływający na przechodzenie radionuklidu do roślin, rodzaj karmy zwierząt hodowlanych, parametry funkcji opisującej przechodzenie cezu i jodu do produktów zwierzęcych (szczególnie do mleka), spożycie produktów żywnościowych w grupach wiekowych populacji danego rejonu.
- 7 Przy weryfikacji procedur obliczeniowych modelu wprowadzono funkcję osadzania aerozolu w zależności od jego średnicy oraz od warunków atmosferycznych, jak również

funkcję przechodzenia radionuklidu z powierzchni liści rośliny do owocu lub korzenia. Zwrócono też uwagę na wzrost współczynnika przejścia cezu z paszy do mleka w przypadku długoterminowych przewidywań (50 lat). Rozwinięto pakiet obliczeniowy modelu umożliwiający ocenę skażeń w środowisku leśnym i wodnym (ze względu na udział produktów pochodzących z tych środowisk w diecie fińskiej).

- 8 Dokonano wyboru odpowiednich parametrów modelu odpowiadających specyficznym właściwościom regionu radioekologicznego Polski. Oznaczało to optymalizację tych parametrów w celu uzyskania dobrej korelacji przewidywań modelu z danymi pomiarowymi. Wykorzystano dostępne bazy danych z pomiarów wykonanych w latach 1986-1997 w Polsce po awarii w Czarnobylu. Dodatkowo wykorzystano prace własne dotyczące oceny przejścia ¹³⁷Cs i ¹³⁴ Cs z gleby do trawy na terenach północno wschodniej Polski oraz oceny pobierania ¹³⁴Cs i ¹³⁷Cs z pożywieniem. Sprawdzono przewidywania modelu dla poszczególnych komponentów środowiska, zaczynając od stężeń w powietrzu, skażenia gruntu, stężenia w trawie, w mleku i jego produktach oraz kończąc na ostatnim weryfikowalnym pomiarami przedziale jakim jest stężenie radionuklidu w narządzie krytycznym. Z przeprowadzonych porównań wynika, że istotne różnice wystąpiły tylko dla współczynników przejść jodu i cezu z paszy do mleka. Są one o połowę niższe niż wartości rekomendowane w literaturze.
- 9 Ustalono parametry modelu, wybrane na podstawie danych z literatury jako wartości charakterystyczne również dla Polski. Były to:
 - 9.1 funkcje metabolizmu cezu w organizmie człowieka dla różnych grup wiekowychweryfikacja modelu nie wskazuje na istnienie zasadniczych różnic użytych parametrów funkcji retencji cezu w porównaniu do średnich dla populacji;
 - 9.2 czas połowicznego zaniku jodu i cezu w trawie wyniku procesów atmosferycznych wynosił około 15 dni w zakresie (10-30 dni) i nie różnił się od wartości podawanych w literaturze;
 - 9.3 funkcje metabolizmu jodu w organizmie człowieka dla różnych grup wiekowych
 weryfikacja modelu nie wskazywała na istnienie zasadniczych różnic użytych parametrów funkcji metabolizmu jodu w stosunku do średnich dla populacji;
 - 9.4 współczynniki usuwania radionuklidu z pożywienia w wyniku procesów kulinarnych- zmienność tych parametrów może wpływać na rozrzut wyników pomiarów.

- 10 Przeprowadzono weryfikację modelu dla długoterminowych przewidywań stężenia ¹³⁷Cs w mleku (10 lat). Otrzymano zgodność wartości przewidywanych z pomiarowymi przy dwuskładnikowej funkcji wykładniczej opisującej wiązanie się ¹³⁷Cs w glebie w postaci: okres połowicznego zaniku składowej szybkiej $T^{szybka}_{1/2} = 0.7$ lat z udziałem równym 68%, oraz okres połowicznego zaniku składowej wolnej $T^{wolna}_{1/2} = 15.4$ lat z udziałem równym 32%.
- 11 Wiarygodność przewidywań kodu CLRP dla promieniotwórczego ¹³¹I była testowana na bazie własnych pomiarów zawartości ¹³¹I w tarczycy mieszkańców różnych rejonów Polski oraz dostępnych baz danych pomiarów wykonanych w okresie 1986-1997 roku. Przeprowadzono testy poprawności zastosowanych algorytmów obliczeniowych zawartości ¹³¹I w tarczycy przy wprowadzeniu środków zapobiegawczych takich jak podawanie blokującej dawki jodku potasu. Przeprowadzone porównanie wykazało poprawność zastosowanego modelu metabolizmu jodu dla różnych grup wiekowych.
- 12 Przeprowadzono analizę stopnia dopasowania przewidywań modelu z wartościami pomiarowymi przy założeniu że optymalnie zostały dobrane parametry modelu opisujące dany ekosystem oraz że wiarygodne są dane początkowe scenariusza tzn: skażenie powietrza i warunki atmosferyczne. Jako kryterium dopasowania zastosowano współczynnik wiarygodności RI (reliability index) zalecany przez MAEA dla testowania modeli. Testowano również stopień dopasowania 95% przedziału ufności wartości przewidywanych przez model do 95% przedział ufności średnich wartości pomiarowych. Służy to ocenie wiarygodności modelu w sytuacji, gdy ocena narażenia populacji będzie musiała zostać dokonana we wczesnej fazie uwolnienia przy ograniczonej bazie danych pomiarowych.
 - 12.1 Porównanie przewidywań modelu z wartościami pomiarowymi dla ¹³¹I było rodzajem weryfikacji modelu dla krótkotrwałego skażenia. Dla trzech podstawowych składników środowiska: opadu, trawy i mleka, wskaźnik wiarygodności RI przewidywań modelu wynosił około 2 a współczynnik korelacji 0.7. 95% przedział ufności przewidywań modelu dla mleka wynosił (3.7×P,1/3.7×P) i zasadniczo pokrywał zakresy ufności średnich pomiarowych. Wskaźnik RI w przypadku porównania przewidywań modelu z wartościami pomiarowymi aktywności jodu ¹³¹I w tarczycy wzrastał do wartości bliskiej 3 dla różnych grup wiekowych i wariantów blokady tarczycy. Powodem tego był duży

rozrzut wartości pomiarowych, widoczny nawet dla terenów średnio skażonych o lepszej statystyce pomiarów aktywności ¹³¹I w tarczycy. Kres górny 95% przedziału ufności przewidywań modelu (3×P) pokrywał większość kresów górnych 95% przedziału ufności wartości pomiarowych z rejonu Warszawy. Po uwzględnieniu pomiarów z całej Polski, kres górny 95% przedziału ufności przewidywań pokrywający kres górny 95 % przedziału ufności wartości średniej równy wynosił 10×P. Wypływa stąd wniosek, że w przypadku przewidywań dawek od ¹³¹I "bezpieczny" współczynnik określający górny zakres spodziewanych aktywności w tarczycach ludności oraz spodziewanych dawek powinien być 10× wartość przewidywana.

- 12.2 Porównanie przewidywań modelu z wartościami pomiarowymi dla ¹³⁷Cs było rodzajem weryfikacji modelu dla długotrwałego skażenia a w przypadku ¹³⁴Cs, skażenia trwającego średni okres czasu (parę lat). Dla trzech podstawowych składników środowiska: opadu, trawy oraz mleka wskaźnik wiarygodności RI przewidywań modelu wynosił około 1.5 ze współczynnikiem korelacji wartości przewidywanych i pomiarowych równym 0.75 (dla aktywności ¹³⁴Cs w całym ciele 0.63). Podobnie jak w przypadku ¹³¹I w pierwszych miesiącach po awarii zaznaczyła się duża rozpiętość wyników pomiarów zawartości ¹³⁴Cs i ¹³⁷Cs w całym ciele, ale nie przekraczająca 95% zakresu ufności wartości przewidywanych równego (2.5×P, 1 /2.5×P). Zakres ten pokrywa 95% przedział ufności średnich pomiarowych. Oznacza to że zmienność warunków środowiska generuje rozpiętość zawartości ¹³⁷Cs i ¹³⁴Cs w całym ciele około 6 razy.
- 13 Na bazie porównań przewidywań modelu z pomiarami aktywności ¹³¹I w tarczycy ludności Polski oraz aktywności ¹³⁷Cs i ¹³⁴Cs w całym ciele nasuwa się wniosek, że nawet przy starannym dobraniu parametrów modelu i ustaleniu zakresu przedziału ufności jego parametrów, 95% przedział ufności wartości przewidywanych jest równy (3×P,1/3×P). W przypadku krótko życiowego izotopu ¹³¹I zakres ten może być jeszcze większy: (10×P, 1/10×P). Narzuca to co najmniej taką granicę rozpiętości dawek w populacji przewidywanych przez model, zwłaszcza w pierwszej fazie skażenia. W przypadku wykrycia przez system monitoringu znamiennych statystycznie większych skażeń niż przewidywania modelu, zalecana byłaby ocena narażenia dla tych miejsc oddzielnie z wykorzystaniem parametrów charakterystycznych dla tych rejonów.

7 WNIOSKI

- 1 Opracowano komputerowy model CLRP, który pozwala na prognozowanie skażeń izotopami promieniotwórczymi jodu i cezu różnych komponentów środowiska i przechodzenia do człowieka po uwolnieniu tych radionuklidów do atmosfery. W przypadku cezu-137 można przewidywać skażenia w okresie do około 50 lat po uwolnieniu, a w przypadku izotopów jodu-131- do jego całkowitego rozpadu.
- 2 Model CLRP umożliwia prognozowanie zawartości radionuklidów w całym ciele lub w narządzie krytycznym, a następnie ocenę dawek promieniowania od skażeń wewnętrznych.
- 3 Model CLRP umożliwia ocenę ekspozycji zewnętrznej pochodzącej od chmury i radionuklidów zdeponowanych na powierzchni ziemi.
- 4 Weryfikacja modelu w międzynarodowych programach oraz na podstawie pomiarów prowadzonych w Polsce po awarii EJ w Czarnobylu potwierdziła poprawność procedur obliczeniowych, struktury modelu i zastosowanych parametrów. Stopień dopasowania modelu do wartości obserwowanych spełniał standardy Międzynarodowej Agencji Energii Atomowej.
- 5 Model CLRP uwzględnia wszystkie drogi narażenia człowieka, umożliwia szybką prognozę skażeń środowiska i ludzi oraz przewiduje wartości dawek promieniowania, dzięki czemu może być wykorzystany do wspomagania decyzji dotyczących ochrony ludności w sytuacjach awaryjnych.

BIBLIOGRAFIA

- [1] International Nuclear Safery Advisory Group (1986). Summary Report on the Post-Accident Review Meeting on the Chernobyl Accident. International Atomic Energy Agency, Safety Series No. 75, Vienna, Austria.
- [2] Raport Komisji Rządowej (1986). Komisja Rządowa do Spraw Oceny Promieniowania Jądrowego i Działań Profilaktycznych. Warszawa.
- [3] IAEA (1982). Generic models and Parameters for Assessing the Environmental Transfer of Radionuclides from Routine Releases. Safety Series No. 57, International Atomic Energy Agency , Vienna, Austria.
- [4] IAEA (1989). Evaluating the Reliability of Predictions Made Using Environmental Transfer Models, Safety Series No. 100, International Atomic Energy Agency, Vienna, Austria.
- [5] Hoffman, F.W. et al. (1983). The Transfer of Co-60, Sr-90, I-131 and Cs-137 through Terrestrial Food Chains, A Comparison of Model Predictions, Swedish Report STUDSVIK/NW-83/417, Studsvik Energiteknik AB, Sweden.
- [6] BIOMOVS II. (1993). Guildness for Uncertainty Analisis Development for Participants in the BIOMOVS II Study, BIOMOVS II Technical Report No. 1, Swedisch Radiation Protection Institute, Stockholm, Sweden.
- [7] BIOMOVS II. (1995). Qualitative and Quantitative Guidelines for the Comparison of Environmental Model Predictions. BIOMOVS II Technical Report No. 3, Swedisch Radiation Protection Institute, Stockholm, Sweden.
- [8] BIOMOVS II. (1996). Uncertainity and Validation: Effect of Model Complexity on Uncertainty Estimates. BIOMOVS II Technical Report No. 16, Swedisch Radiation Protection Institute, Stockholm, Sweden.
- [9] IAEA (1995). Validation of multiple pathways assessement models using Chernobyl fallout data from the Central Bohemia of Czech Republic- Scenario CB. First raport of the VAMP Multiple Patways Assessement Group. IAEA-TECDOC-795, International Atomic Energy Agency, Vienna, Austria.
- [10] BIOMOVS (1991). Proceedings of a Symposium on the Validity of Environmental Transfers Models (Stockholm, 1990), Swedish Radiation Protection Institute, Stockholm Sweden.
- [11] Kabata-Pendias, A., Pendias, H. (1993). Biogeochemia pierwiastków śladowych, PWN, Warszawa, 334.
- [12] Edwards, R. R. (1962). Iodine-129: its occurrence in nature and its utility as tracer, Science 137, 853-860.
- [13] NCRP (1983). Iodine-129:Evaluation of releases from nuclear power plant generation. NCRP Report No. 75, National Council on Radiation Protection and Measurements.
- [14] UNSCEAR (1995). Sources and Effects of Ionizing Radiation:Dose Asseement for Radionuclides. United Nation Scientific Commitee on the Effects of Atomic Radiation, Fortyfourth session, E.95.IX.2.

- [15] PAA (1988). Zarządzenie Prezesa Pastwowej Agencji Atomistyki z dnia 31 marca 1988r. w sprawie dawek granicznych promieniowania jonizującego i wskaników pochodnych okrelających zagrożenie promieniowaniem jonizującym. Monitor Polski 14, poz. 124.
- [16] UNSCEAR (1993). Sources and Effects of Ionizing Radiation: Report to the General Assembly, with scientificannexes, E.94.IX.2.
- [17] UNSCEAR (1995). Sources and Effects of Ionizing Radiation: Official Records of the General Assembly, Nineteen Sesion, Suplement No. 14.
- [18] Eggleton, A.E.J., Atkins, D.H. and Cousins L.B. (1963). Chemical and physical nature of fallout 131-I and carrier – free 131-I relesed in air, Health Physics, 9, 1111.
- [19] Voilleque, P.G. (1979). Iodine species in reactor effluents an in the environment. EPRI Report NP-1269.
- [20] Chamberlain, A.C. and Chadwick R.C. (1965). Transport of iodine from atmosfere to ground. AERE-R-480-70, United Kingdom Atomic Energy Authority, Harwell, UK
- [21] IAEA (1994). Handbook of Parameter Values for The Prediction of Radionuclide Transfer In Temperate Environments. Technical Reports Series No 364, International Atomic Energy Agency , Vienna, Austria.
- [22] IAEA (1994). Modeling The Deposition Of Airborne Radionuclides Into The Urban Environment, IAEA-TECDOC-760.
- [23] Maqua, M., Bonka H. and Horn H.G. (1987). Deposition Velocity and Washout Coefficient of Radionuclides Bound to Aerosol Particles and Elemental Radioiodine. Radiation Protection Dosimetry 21(1/3), 43-49.
- [24] Frissel, M.J. (1996). Soils role in the restoration of terrestrial sites contaminated with radioactivity: Radioecology and the Restoration of Radioactive-Contaminated Sites; (eds. Luykx, F.F., Frissel, J.M.), NATO ASI Series, 2. Environment-Vol.13
- [25] Rocznik statystyczny GUS (1992), Warszawa
- [26] Uprawa Roślin Rolniczych (1992). (pod redakcją naukową Prof. Dr. Hab. Zyhmunta Hryniewicza), Państwowe wydawnictwo Rolonicze i Lesne, Warszawa 1992
- [27] Muller, H., Gering, F. (1997). Model parameters of the Food Chain and Dose Modules in the RODOS Data Base, GSF, TN(96)-04, Forschungszentrum für Umvelt und Gesundheit, Neucherberg, Germany.
- [28] Whicker, F.W., Kirchner, T.B. (1987). PATHWAY: A Dynamic Food-Chain Model to Predict Radionuclide Ingestion after fallout Deposition. Health Physics 52(6), 717-737.
- [29] Chamberlain, A. C., Garland J. A. (1991). Interception of Radioactive Fallout by Vegetation, Rep. AERE R13826, United Kingdom Atomic Energy Authority, Harwell, UK
- [30] Lassey, K.R. (1982). The interception and retention of aerosols by vegetation. The formulation of a filtration model. Atmospheric Environment, 16(1), 13-24.
- [31] Miller, C.W., Hoffman, F. O. (1982). An Analysis of reported values of the Environmental Half-Time for Radionuklides Deposited on the surfaces of Vegetation: Proceedings of International

Symposium on Migration in the terrestrial Environment of Long-Lived Radionuclides from nuclear Fuel Cycle. Vienna, Austria, 10-15.05.1982, IAEA-SM-257/63.

- [32] Breuer, F. and De Bortoli, M. (1973). Behaviour of radioiodine in the environment and in man. CNEN, RT/PROT(73), 13
- [33] Bergstrom, S.O.W. (1967). Transport of fallout 131-I in to milk. Radiological Concentration Processes, Oxford.
- [34] Vandecastelle, C. "Farm programme", SCK-CEN 1995 Scientific Report, Belgian Nuclear Research Center, Mol, Belgium
- [35] Ng, Y. C., Clossher, C.S., Tompson, S.E. (1982). Transfer Coefficients for Assessing the Dose from Radionuclides in Meat and Eggs, Report NUREG/CR-2976 UCID-19464. Lawerence Livermore National Laboratory, Livermore, USA.
- [36] Ng, Y. C., Clossher, C.S., Quinn, D.J., Tompson, S.E. (1977). Transfer Coefficients for Assessing the Prediction of the Dose to Man via the Forage-Cow-Milk Pathway from Radionuklides Released to the Biosphere. Report UCRL-51939. Lawerence Livermore National Laboratory, Livermore, USA.
- [37] Kirchner, G. (1994). Transport of Iodine and Cesium via the Grass-Cow-Milk Paathway after the Charnobyl Accident. Health Physics, 66 (6), 653-665.
- [38] Bustad, L.F., Wood, D.H. et al. (1963). 131-I in milk and thyroid of dairy cattle following a single contamination event and prolonged daily administration. Health Physics, 9, 1231-1234.
- [39] Ennis, M.E., Jr., Ward, G.M., Johnson, J.E., Boaman, K.N. (1988). Transfer Coefficients of selected radionuclides to animal products. II. Hen, Eggs and meat. Health Physics, 54, 167-170.
- [40] Bustad, L.K., et al. (1957). Biologiocal effects of I-131 continously administered to sheep. Radiatiation Research, 6, 380-413.
- [41] Prohl, G., Muller, H. and Voigt, G. (1988). The Influence of the Feeding Practice and the Season on the Contamination of Animal Food Products after a Single Deposition of Radionuclides. CEC Workshop on Transfer of Radionuclides to Livestock, Oxford, UK, 5-8.9. 1988.
- [42] Voigt, G. et al. (1988). Determination of the Transfer of Caesium and Iodine from Feed into Domestic Animals. CEC Workshop on Transfer of Radionuclides to Livestock, Oxford, UK, 5-8.9. 1988.
- [43] Voigt G. et al. (1989). Experimental determination of the transfer coefficients of ¹³⁷Cs and ¹³¹I from fodder into milk of cows and sheep after the Chernobyl accident. Health Physics 57(6), 967-973.
- [44] Coughtrey, P. J. (1990). Radioactivity transfer to Animal Products. Report EUR. 12608 EN, Commission of the European Communities, Luxemburg.
- [45] Stather, J.W., Greenhalgh, J.R. (1983). The Metabolism of Iodine in Children and Adults. Report NRPB-R140, National Radiological Protection Board, Chilton, Oxford, UK.
- [46] Dłużniewska K., i inni. (1991). Ocena ilości jodu w całodziennym pożywieniu i w moczu osób objętych badaniami epidemiologicznymi w makroregionie krakowskim po awarii w Czarnobylu oraz poziom jodu w wodzie pitnej w badanym obszarze. Polish Journal of Endocrinology, 42(2), 45-49.

- [47] Nauman, J. (1984). Anatomia i fizjologia tarczycy. Endokrynologia kliniczna, PZWL .
- [48] ICRP 23 (1974). Report of the Task Group on Reference Man. ICRP Publication 23.
- [49] Derecki, J. (1971). Jod promieniotwórczy a organizm ludzki i zwierzęcy. Ośrodek Informacji o Energii Jądrowej, Warszawa.
- [50] Johnson, J.R. (1981). Radioiodine Dosimetry. Journal of Radioanalitycal Chemistry, 65, 223-238
- [51] Anbar M., Guttman, S., et al. (1986). The determination of the rate of deiodination of thyroxine in human subject. Journal of Clinical Investigation, 44, 124-135.
- [52] Halan, K.E (1964). The metabolism of radioiodine and radiation dosage in man"; British Journal of Radiology, 37, 101-107.
- [53] Morrison, R.T. (1975). Radioiodine uptake studies in newborn infants. Journal of Nuclear Medicine, 4,162.
- [54] Dunnung, D.E., Schwarz, G. (1981). Variability of human thyroid characteristics and estimates of dopse from Ingested I-131. Health Physics, 40, 661.
- [55] Saxena, K.M., Chapman, E.M., et al. (1962). Minimal dosage of iodine required to suppress uptake of iodine-131 by normal thyrouid. Science, 138, 430.
- [56] Ramsden, D., Passant, F.H., et al. (1967). Radioiodine uptakes in the thyroid studies of the blocking and subsequent recovery of the gland following the administration of stable iodine. Health Physics, 13, 633-646
- [57] Colard, J. F., Verly, J.F., et al. (1965). Fate of iodine radioisotopes in human and estimation of the radiation exposure. Health Physics, 11, 23.
- [58] Greenhalgh, J.R., Fell, T.P., Adams, N. (1985). Doses from Intakes of Radionuclides by Adults and Young People, Report NRPB-R162, National Radiological Protection Board, Chilton, Oxford, UK.
- [59] Johnson, J. R. (1975). Compartment models of radioiodine in man. Report AECL-5244, Chalk River Nuclear Laboratories, Ontario, Canada.
- [60] ICRP 30 (1979). Limits for Intakes of Radionuclides by Workers. ICRP Publication 30, International Commission on Radiological Protection, Pergamon Press, Oxford.
- [61] Assimakpoulos, P.A. et al.(1987). Measurement of the transfer coefficient for radiocesium transport from a sheep's diet to its milk. Health Physics, 53, 685-689.
- [62] Crouch, E.A.C. (1977). Fission-poduct yields from neutron-inducted fission. At. Data Nucl. Data Tables 19(5), 417
- [63] ICRP 56 (1989). The Biokinetic Data for Caesium, ICRP Publication 56, International Commission on Radiological Protection, Pergamon Press, Oxford.
- [64] Kliment, V. (1991). Contamination of Pork by Caesium Radioisotopes. Journal of Environmental Radioactivity, 13, 117-124
- [65] UNSCEAR (1977). Sources and Effects of Ionizing Radiation. United Nations Scientific Committee on the Effects of Atomic Radiation, 1977 Report to the General Assembly, with scientific annexes, E.77.IX.2.

- [66] UNSCEAR (1972). Ionizing Radiation: Levels and Effects. Volume I: Levels, Volume II: Effects. United Nations Scientific Commitee on the Effects of Atomic Radiation, Report to the General Assembly, with scientific annexes, E.72.IX.17.
- [67] WHO (1989). Health Hazards from radiocesium following the Chernobyl nuclear accident. Journal of Environmental Radioactivity, 10, 257-295
- [68] Yamagata, N. (1962). Balance of potassium, rubidium and caesium between Japanese people and diet and assessement of their biological half-times. Nature 196, 83-84.
- [69] Rulik, P., Bucina, I., Malatowa, I. (1989). Aerosol Sise distributionin dependence of the type of radionuklide after the Charnobyl Accident: Proceedings of XVth Regional Congress of IRPA, Visby, Sweden, 10-14 September 1989.
- [70] Prister, B.S., Perepelatnikowov, G.P., Pierepelyatnikowa, L.V (1993). Contermeasures used in the Ukraine to produce forage and animal food products with radionuklide levels below intervention limits after the Charnobyl accident. The Science of the Totatal Environment, 137, 183-189.
- [71] P. J. Coughtray (1996). Assessement of Radionuklide Transport from Soils to Plants and from Plants to Soils: Radioecology and the Restoration of Radioactive-Contaminated Sites. (eds. Luykx, F.F., Frissel, J.M.), NATO ASI Series, 2, Environment-Vol.13, 25-68.
- [72] Gleboznawstwo (1993). Praca zbiorowa pod redakcja B. Dobrzańskiego i S. Zawadzkiego, PWRiL, Warszawa
- [73] Valce E., Cremers, A. (1994). Sorption-desorption dynamics of radioceasium in organic matter soils. The Science of the Totatal Environment, 157, 275-282.
- [74] Olsen, R.A., Joner, E., Bakken, L.R., Soil fungi and the fate of radiocaesium in the soil ecosystem- a discussion of possible mechanisms involved in the radiocaesium accumulation in fungi, and the role of fungi as Cs-sink in soil. Proceedings of the Workshop on Transfer of Radionuclides in Natural and Semi-natural Environments, Elsevier Applied Science, Barking, UK, 657-663
- [75] Guilite, O., Fraiture, A., Lambinon, J., "Soil-fungi radioceasium transfer in forest ecosystem, Proceedings of the Workshop on Transfer of Radionuclides in Natural and Semi-natural Environments, Elsevier Applied Science, Barking, UK, 468-476
- [76] Kühn, W., Handl, J., Schuller, P. (1984). The influence of soil parameters on ¹³⁷Cs uptake by plants from long-term fallout on forest clearings and grassland. Health Physics, 46, 1083-93.
- [77] Cremers, A., Elsen, A., De Preter, P.& Maes, A. (1998). Quantitative analysis of radiocaesium retention in soils. Nature 335, 247-249
- [78] Voigt, G., Prohl, G., Muller, H. (1991). Experiments on the Seasonality of the Cesium Translocation in Cereals, Potatoes and Vegetables. Radiatation and Environmental Biophysics, 30, 295-303.
- [79] Boone F.W., Ng Y.C., Palms J.M.(1981). Terrestrial Pathways of Radionuclide Particulates. Health Physics, 41(5), 735-747.
- [80] Kirchner, T.B, Whicker F.W. (1983/1984). Validation of Pathway. A Simulation Model of the Transport of Radionuclides through Agroecosystems. Ecological Modelling, 22, 21- 44.

- [81] Pietrzak-Flis Z., Krajewski P., Krajewska G., Sunderland N.R. (1994). Transfer of radiocesium from uncultivated soils to grass after the Chernobyl accident, Science of the Total Environment, 141, 147-153
- [82] Scott Russel R. (1966). Entry of radioactive materials in to plants: Radioactivity and Human Diet. (ed. R. Scott Russel), Pergamon Press 1966, 93-95
- [83] Pietrzak-Flis Z., Krajewski P., Mandecka M. (1992). Radiocaesium body burden of Warsaw inhabitants in the period of 1988-1991, Nukleonika 37, 71.
- [84] Frissel, M.J. (1961). The adsorbtion of some organic compounds, especially herbicides, on clay minerals, Verslagen van Landbouwkundige onderzoekingen nr.67.3, PUDOC, Wageningen, Netherlands.
- [85] Malm, J., Rantavaara, A., Uusi-Rauva, A., Paakkola, O. (1991). Uptake of Ceasium-137 from Peat and Compost Mould by Vegetables in a Greenhouse Experiment. Journal of Environmental Radioactivity, 14, 123-133.
- [86] Haak, E. (1990). Long term transfer of Cs-137 and Sr-90 from soil to barley and grass under Sweedish conditions. Raport IUR Workshop on the measurement of soil to plant transfer factor, part II, Wageningen, The Netherlands, 38-65
- [87] Van Bergeijk, K.E., Noordijk, H., Lembrechts, J., Frissel, M.J. (1992). Influence of pH, Soil Type and Soil Organic Matter Content On Soil-to-Plant Transfer of Radiocesium and -Strontium as Analysed by a Nonparametric Method, Journal of Environmental Radioactivity, 15, 265-276.
- [88] Noordijk, H., van Bergeijk, K.E., Lembrechts, J., Frissel, M.J. (1992). Impact of Ageing and Weather Conditions on Soil-to-Plant Transfer of Radiocesium and Radiostrontium. Journal of Environmental Radioactivity, 15, 277-286.
- [89] Livens, F.R, Horrill, A.D., Singleton, D.L. (1991). Distribution of radiocesium in the soil-plant systems of upland areas of Europe. Health Physics 60(4), 539-545.
- [90] Squire, H.M. and Middleton, L.J (1992). Behaviour of ¹³⁷Cs in soils and pastures, a long term experiment. Radiation Botany, 6, 413-23.
- [91] Smith, J.T, Hilton J., Brookes A.M., Howard B.J. i inni, (1996). Modeling the chemical availability of radionuclides in upland organic soils. CEH Integrating Fund Project T11059v2-First progress report. ITEE Merlewood&IFE, Wareham.
- [92] Haak, E., Lonsjo, H. (1986). Long-term transfer of ¹³⁷Cs and ⁹⁰Sr to grass on contrasting types of Swedish pastures. Proceedings of the International Symposium on Radioecology 1996 – Ten years terrestrial radioecological research following the Chernobyl accident. (eds. Gerzabek, M., Desmet, G., Howard, B.J., Heinrich, G., Schimmack, W.). Austrian Soil Society, Vienna.
- [93] Beresford, N.A., Howard, B.J., Barnett, C.L., Crout, N.M.J. (1992), The uptake by vegetation of Charnobyl and aged radiocaesium in upland west Cumbria. Journal of Environmental Radioactivity, 16, 181-195.
- [94] Sheppard, S.C., Evenden, W.G. (1998). The Assumption of Linearity in Soil and Plant Concentration Ratios: An Experimental Evolution. Journal of Environmental Radioactivity, 7, 221-247.
- [95] Ng Y.C., Colsher C.S and Thomson S.E. (1982). Soil-to-Plant Concentration Factors for Radiological Assessments, Report NUREG/CR-2975 UCID-19463, Lawrence Livermore National Laboratory, Livermore, USA.
- [96] Buzl K., Kracke W. (1989). Seasonal Variation of Soil-to-Plant Transfer of K and Fallout Cs-134,137 in Peatland Vegetation. Health Physics 57(4), 593-600.
- [97] Bunzl, K., Kracke, W. (1987). Soil to Plant Transfer of Pu 239+240, Pu-238, Am-241, Cs-137 and Sr-90 from Global Fallout in Flour and Bran from Wheat, Rye, Barley and Oats, as Obtained by Field Measure ments, The Science of the Total Environment, 63, 111-124.
- [98] Johnson, J.E., Ward, G.M. et al. (1968). Metabolism of radioactive cesium (¹³⁴Cs and ¹³⁷Cs) and potassium of diry cattle as influenced by high and lower forage diets. Journal of Nutrition, 94, 282-288.
- [99] Niesiobędzka, K., Szperliński, Z. (1998). Wpływ właściwości gleb na migracje radionuklidu 137Cs w ekosystemie gleba-szata roślinna. Postępy Techniki Jądrowej, 41(2), 9-16
- [100] Ward,G.M., Keszthellyi, Z., Kenyar, B., Kralovanszky, U.P., Johnson, J.E. (1989). Transfer of ¹³⁷Cs to milk and meat in Hungary from Charnobyl fallout with comparisons of world-wide fallout in the 1960s. Health Physics, 57(4), 587-592.
- [101] Hilton, J.; Cambray, R.S.; Green, N. (1992). Chemical fraction of radioactive caesium in airborne particles containing bomb fallout, Charnobyl fallout and atmospheric material from the Sellafield site. Journal of Environmental Radioactivity, 15, 103-111.
- [102] Voors, P.I., Van Weers, A.W. (1991). Transfer of Chernobyl Radiocaesium (Cs-134 and Cs-137) from Grass Silage to Milk in Dairy Cows. Journal of Environmental Radioactivity,13, 125-140.
- [103] Henrichs, K., Peretzke, H.G., Voight, G., Berg, D. (1989). Measurements of Cs absorption and retention in man. Health Physics, 57(4), 571-578.
- [104] IAEA(1996). International Basic Safety Standarts Nr 115 1996 r. International Atomic Energy Agency, Vienna, Austria.
- [105] PAA(1996). Podstawowe normy bezpieczeństwa dotyczące ochrony zdrowia przed promieniowaniem jonizującym pracowników i ogółu ludności (Dyrektywa Rady Unii Europejskiej nr 96/29/Euroatom. Bezpieczeństwo Jadrowe i Ochrona Radiologiczna Nr 4/96 (Vol.29). Pąństwowa Agencja Atomistyki, Warszawa.
- [106] Fredrikson, L., Graner R.J., Russel, R.S. (1966). Caesium-137. w: Radioactivity and human diet. (ed. R. Scott Russel), 317-352, Pergamon Press, Oxford, 1966.
- [107] Rosoff, B., Cohn, S.H., Spencer, H. Caesium-137 metabolizm in man. Journal of Radiatiation Research, 19, 645-654.
- [108] Derecki, J. (1966). Badania nad oznaczeniem, rozmieszczeniem i wydalaniem cezu-137 u szczura. Rocznik Wojskowego Instytutu Higieny i Epidemiologii im. Gen. Karola Kaczkowskiego, 5(8), 93-191.
- [109] Pietrzak-Flis Z. (1973). Ocena zagrożenia ludności Polski Cezem-137 z wybuchów jądrowych. (Praca doktorska), Centralne Laboratorium Ochrony Radiologicznej, Warszawa.
- [110] Pietrzak-Flis, Z. (1973). Distribution of Radioactive and stable cesium in the human body: Health Physics Problems of Internal Contamination. IRPA Second European Congress on Radiation Protection. 3-5 May 1972, Budapest, Hungary.
- [111] Yamagata, N. (1962). The concentration of Common Cesium and Rubidum in Human Body. Journal of Radiation Research, 3, 9-30.

- [112] Pietrzak-Flis, Z., Bysiek, M. (1972). Intake and Excretion of stable caesium in children and teenagers, Nukleonika, 10, 559-562.
- [113] IAEA (1978). Manual on early medical treatment of possible radiation injury. Safety Series No. 47. International Atomic Energy Agency, Vienna, Austria.
- [114] Rundo, J., Taylor, B.T. (1964). The assessment of radioactive cesium in man: Assessment of radioactivity in man, Vol. II, 3-20, Symposium on the Assessment of Radioactive Body Burdens in Men, 11-16 may 1964, International Atomic Energy Agency, Vienna, Austria.
- [115] Pendleton, R.C., Mays C.W., Lloyd, R.D. and Church, B.W.(1965). A trophic level effect on Cs-137 concentration. Health Physics, 11, 1503-1510.
- [116] Ward, G.M., Johnson, J.E. (1968). Balance of Cesium 137 and Potasium and Whole-Body Levels in Young Male Subjects. The American Journal of Clinical Nutrition, 21, 149-153.
- [117] Fujita M., et al. Comperative metabolism of cesium and potasium in mammals- interspecies correlation between body weight and equilibrium level. Health Physics, 12, 1237-1247.
- [118] ICRP 10 (1968). Limits for Intakes of Radionuclides by Workers. ICRP Publication 10, International Commission on Radiological Protection.
- [119] Stara, J.F. (1965). Tissue distribution end excretion of caesium-137 in the guinea pig after administration by rhree different routes. Health Physics 11, 1195-1202.
- [120] Fujita, M. Et al., (1972). Derivation of retention equations of cesium in human internal organs by compartmental analysis. Health Physics, 22, 125-134.
- [121] Yamagata, N., et al. (1962). In vivo experiment on the metabolism of cesium in human blood with reference rubidium and potasium. Journal of Radiation Research, 7, 29-46.
- [122] Iinuma T., et al. (1967). Copmperative studies of Cs-132 and Rb-86 turnover in man using double tracer metod. Journal of Radiation Research, 8, 100-115.
- [123] Richmond C.R., Furthner J.E., Langham W. H. (1962). Long Term Retention of radiocesium by man. Health Physics, 8, 201-205.
- [124] Lloyd, R. D., Mays, C. W. et al. (1973). Metabolism of ⁸³Rb, and ¹³⁷Cs in person with muscle diseases. Journal of Radiation Research, 54, 463-478.
- [125] Lloyd, R. D. (1973). Cesium -137 in Humans. Health Physics, 25, 605-612.
- [126] Harrison, J., and McNeil, K.G. (1964). The effect of chlorothiazyde on Cesium -137 excretion in human subject: Assessment of radioactivity in man", Vol. II, 89-96, Proceedings of Symposium on the Assessment of Radioactive Body Burdens in Men, 11-16 may 1964, International Atomic Energy Agency, Vienna, Austria.
- [127] Naversten, Y. and Linden, K., (1964). Halflife studies of radiocesium in humans: Assessment of radioactivity in man", Vol. II, 78-87. Proceedings of Symposium on the Assessment of Radioactive Body Burdens in Men, 11-16 may 1964, International Atomic Energy Agency, Vienna, Austria.
- [128] Eberhart, L. L. (1967). Relationship of cesium-137 half-life in humans to body weight. Health Physics, 13, 88-91.

- [129] Cryer, M.A., Baverstock K.F. (1972). Biological half-life of Cs-137 in man. Health Phys, 23, 394-395
- [130] Legget, R.W. (1986). Predicting the Retention of Cs in Individuals. Health Physics, 50(6), 747-759.
- [131] ICRP 56 (1989). Age-dependent Doses to Member of the Public from Intake of Radionuclides, Part 1. ICRP Publication 56, International Commission on Radiological Protection.
- [132] McCraw, T.F. (1965). The half time of cesium-137 in man. Radiology Health Data, 6, 711-718
- [133] Wasserman, R.H. and Comar C.L., (1961). The influence of dietary potassium on the retention of chronically ingested cesium-137 in the rat. Journal of Radiation Research, 15, 70-77.
- [134] Jackson D., Couthrey P.J., Crabtree D.F. (1987). Predicted Concentrations of Cs-137, -131, I-129, Pu-241 and Am-241 in Various Foodstuffs Following Deposition to Ground. Journal of Environmental Radioactivity, 5, 143-158.
- [135] Bucina, I., Prouza, Z., Miller, H., Malátowá, I. (1995). Estimation of Mean Eeposure in Region CB, Validation of multiple pathways assessement models using Chernobyl fallout data from the Central Bohemia of Czech Republic- Scenario CB. First raport of the VAMP Multiple Patways Assessement Group, IAEA-TECDOC-795, International Atomic Energy Agency, Vienna, Austria.
- [136] Jacobi P. et al. (1989). Externe Strahlenexposition, GSF-Report 13/89, Forschungszentrum für Umvelt und Gesundheit, Neucherberg, Germany.
- [137] Meckbach, R., Jacob, P. (1988). Gamma exposures due to radionuclides deposited in urban environments, Part II. Location factors for different deposition patterns. Radiation Protection Dosimetry, 25, 1981-1990.
- [138] Jacob P. et al. (1990). Calculation of Organ Doses from Environmental Gamma Rays Using Human Phantoms and Monte Carlo Methods. Part II: Radionuclides Distributed in the Air or Deposited on the Ground, Report GSF-Bericht 12/90, Forschungszentrum für Umvelt und Gesundheit, Neucherberg, Germany.
- [139] Gale, H.J., et al. (1964). Weathering of Caesium-137 in Soil. Nature, 201, 257.
- [140] Lotfi, M., et al. (1991). Calculation of the Individual Effective Dose Equivalent in Italy following the Chernobyl Accident. Journal of Environmental Radioactivity, 13, 141-156.
- [141] Williams, L.R. and Leget, R.W. (1984). A measure of model reliability. Health Physics, 46, 85-95.
- [142] Krajewski, P (1995a). CLRP model descriptions and individual evaluation of model predictions. Validation of multiple pathways assessement models using Chernobyl fallout data from the Central Bohemia of Czech Republic- Scenario CB. First raport of the VAMP Multiple Patways Assessement Group, IAEA-TECDOC-795, International Atomic Energy Agency, Vienna, Austria (241-252).
- [143] Krajewski, P. (1996). CLRP model descriptions and individual evaluation of model predictions. Validation of multiple pathways assessement models using Chernobyl fallout data of ¹³⁷Cs in region Southern Finland- Scenario S- Second raport of the VAMP Multiple Patways Assessement Working Group, IAEA-TECDOC-904, International Atomic Energy Agency, Vienna, Austria (288- 326).

- [144] BIOMOVS II (1996). An Overview of the BIOMOVS II Study and its Findings. BIOMOVS II Technical Report No. 17, Swedisch Radiation Protection Institute, Stockholm, Sweden.
- [145] BIOMOVS II (1996). Uncertainity and Validation: Effect of User Interpretation on Uncertainty Estimates. BIOMOVS II Technical Report No. 7, Swedisch Radiation Protection Institute, Stockholm, Sweden.
- [146] Kirchner, G., Krajewski P., et al. (praca zbiorowa) (1999). Effect of User Interpretationon Uncertainty Estimates: examples from the air-to-milk transfer of radiocesium, Journal of Environmental Radioactivity, 42, (177-190).
- [147] CLOR (1987). Charnobyl Nuclear Power Plant Accident- Monitoring Data from Poland; prepared for IAEA by Central Laboratory for Radiological Protection. Centralne Laboratorium Ochrony Radiologicznej, Warszawa.
- [148] Jagielak, J., Pietruszewski, A., Wołoszyn, Z., Zawanowski, K., i inni (1987). Effective Dose Equivalent to Average Individuals in Warsaw After the Charnobyl Accident, Radiation Protection Dosimetry, 20(4), 243-247.
- [149] Krześniak, J. W., Porstendorfer, J. (1979). Selection of some filter materials used in sampling of airborne radioactive iodine and methyl iodine. Nukleonika 24, 259-269
- [150] Krześniak J. W. Krajewski P i inni, Pomiary stężeń J-131 w powietrzu i aktywności J-131 (dla ludności Polski) zdeponowanego w tarczycy w wyniku inkorporacji po awarii EJ w Czarnobylu, Rap. CLOR Nr. 6/89/Z-VI, 1989.
- [151] IMGW (1986). Zestawienie wysokości opadu za okres 26.IV 31.V 1986 r na stacjach IMGW. Dane Instytutu Meteorologii i Gospodarki Wodnej.
- [152] Ćwik, T., Deszczak, T. (1987). Zawartość Emiterów Gamma u Osób Dorosłych po Awarii w Czarnobylu i Ocena Narażenia od Wchłonięć w 1986r. Raport IEA 2061/E-1/D/A, Instytut Energii Atomowej, Warszawa.
- [153] Żarnowiecki, K. (1988). Analysis of Radioactive Contamination and Radiological Hazard in Poland after the Charnobyl Reactor Accident, Raport CLOR Nr. 120/D, Centralne Laboratorium Ochrony Radiologicznej, Warszawa.
- [154] Stepanenko, V.F., Tsyb, A.F., Parshokov, E.M., et al.(1996). Retrospective thyroid absorbed dose estimation in Russia following the Charnobyl accident: Progress and application to dosimetric evaluation of childhood thyroid cancer morbidity. International Seminar on Dosimetry, Bad Honnef, Germany, November 1996.
- [155] Krajewski P. (1990). Effect of Administering Stable Iodine to the Warsaw Population to Reduce Thyroid Content of Iodine-131 after the Chernobyl Accident. International Symposium on the Recovery Operations in the Event of a Nuclear Accident or Radiological Emergency, IAEA, Vienna, 6-10 November 1989, IAEA-SM-316/19, 257-271.
- [156] Krajewski, P. (1991). Assessment of Effective Dose Equivalent in Thyroid for Polish Popoulation Due To Iodine-131 Intakes After The Chernobyl Accident. Estimation of Thyroid Blocking Effect with Stable Iodine. Polish Journal of Endocrinology, 42(2), 189-202.
- [157] Krajewski, P. (1995). Application of the CLRP Model For Assessement of Thyroid Content and Commited Dose Equivalent for population of Poland due to Releases Radioactive Iodine ¹³¹I To Environment. International Symposium on Environmental Impact of Radioactive Releases, IAEA Vienna, 8-12 Maj 1995. Extended Synopses IAEA-SM-339, 214-215.

- [158] Krajewski, P. (1994). Computer model for the transfer of radionuclides in human ecosystem, Special RODOS Seminar, Warszawa, November 17-18, 1994. Instytut Energii Atomowej, 214-223
- [159] Peterson, S. R. (1996). Hanford Iodine Scenario Description. BIOMOVS II Technical Report No. 7, B1-B7, Swedisch Radiation Protection Institute, Stockholm, Sweden.
- [160] Heeb, C.M., Gydesen, S.P., et al.(1966). Reconstruction of Radionuclide Releases from The Hanford Site, 1944-1972. Health Physics, 71(4), 545-567.
- [161] Tschiersch, J., Georggi, B. (1987). Chernobyl fallaut size distribution in urban areas. Journal of Aerosol Science, 18, 689-692.
- [162] Grabowski, D., Kurowski, W., Muszyński, W., i inni "Skażenia promieniotwórcze środowiska i żywności w Polsce w 1994 roku; RAPORT CLOR nr 128/D, Centralne Laboratorium Ochrony Radiologicznej, Warszawa.
- [163] Grabowski, D., Kurowski, W., Muszyński, W., i inni "Skażenia promieniotwórcze środowiska i żywności w Polsce w 1995 roku; RAPORT CLOR nr 129/D, Centralne Laboratorium Ochrony Radiologicznej, Warszawa.
- [164] Grabowski, D., Kurowski, W., Muszyński, W., i inni "Skażenia promieniotwórcze środowiska i żywności w Polsce w 1996 roku; RAPORT CLOR nr 131/D, Centralne Laboratorium Ochrony Radiologicznej, Warszawa.
- [165] Biernacka, M, Henschke, J., Jagielak, J. (1991). Radiologiczna mapa Polski. Bezpieczeństwo Jądrowe i Ochrona Radiologiczna, Nr-8-1991, Państwowa Agencja Atomistyki, Warszawa.
- [166] Krajewski, P. (1993). Transfer of radiocesium down the soil column for different types of soil, Final Report on Long term post Chernobyl Radioactivity and Radiation Protection Criteria for Risk Reduction, Raport of Research Project No PAA/EPA-89-12, Centralne Laboratorium Ochrony Radiologicznej, Warszawa.
- [167] Rocznik statystyczny 1998; GUS Wa-wa XLVIII
- [168] Pietrzak-Flis, Z., Krajewski, P. (1994). Radiocesium in diet and man in northeastern Poland after the Chernobyl accident, Health Physics, 67(2), 115-121.
- [169] Shaw, G., Hewamanna, R., et al. (1992). Radiocaesium Uptake and Translocation in Wheat with Reference to the Transfer Factor Concept and Ion Competition Effects, Journal Environmental Radioactivity, 16, 167-180.
- [170] Bergstrom U. et al. (1982). BIOPATH A Computer Code for Calculation of the Turnover of Nuclides in the Biosphere and the Resulting Doses to Man, Report STUDSVIK/NW-82/261, Studsvik Energiteknik AB, Sweden.
- [171] Spezzano, P., Giacomelli, R (1991). Transport of I-131 and Cs-137 from Air to Cows'Milk Produced in north-western Italian Farms Following the Chernobyl Accident, Journal of Environmental Radioactivity, 13, 235-250.
- [172] Kevarling Buisman, A.S. (1982). From Body Burden to Effective Dose Equivalent. A compilation of Data For the Evaluation of Whole Body Counter measurements. Raport ECN-116. Netherlands Energy Research Foundation ECN, The Netherlands.
- [173] Joyet, G., Joyet M.L. (1970). The Exponential Decrease of Cs-137 in Man from Mid-1965 through Mid-1968 and its Significance, Health Physics, 18, 455-465.

- [174] Strenge, D.L., Soldat, J.K., Watson, E.C. (1978). A Review of Methodology for Accident Consequence Assessment, Report NUREG/CR-0545 PNL-2633, Leverence Livermore National Laboratory, Livermore, USA.
- [175] Gustafson, P.F., Miller, J.E (1969). The significance of 137 Cs in man and his diet. Health Physics, 16, 167-183.

SPIS TABEL

Tabela 1.1—1. Uwolnienia ¹³¹ I w wyniku awarii jadrowych	.11
Tabela 1.4—1. Przykładowe prędkości migracji oraz T1/2 dla jodu dla średnich opadu rocznego w Polsce	.14
Tabela 1.6—1. Przykładowe parametry funkcji retencji jodu w różnych produktach zwierzęcych rekomendowane dla modeli środowiska dla Europy.	.18
Tabela 1.7—1. Podaż jodu stabilnego dla osób dorosłych	.19
Tabela 1.7—2. Parametry metabolizmu jodu dla 6 grup wiekowych wg. Modelu Johnsona	.25
Tabela 2.1—1. Uwolnienia cezu w wyniku awarii elektrowni jadrowych.	.28
Tabela 2.2—1 Prędkość depozycji aerozolu [m/s] w zależności od rodzaju powierzchni	.29
Tabela 2.3—1. Przykładowe prędkości migracji cezu oraz wartość T _{1/2} dla warstw 10 i 25 cm gleby przy średnim opadzie rocznym w Polsce równym 700mm	.31
Tabela 2.4—1. Wpływ właściwości gleby na współczynniki przechodzenia cezu z gleby do roślin	.34
Tabela 2.5—1. Parametry funkcji retencji cezu w niektórych produktach zwierzęcych	.37
Tabela 2.6—1: Rozmieszczenie cezu w ciele człowieka	.39
Tabela 2.6—2. Wartości parametrów metabolizmu w zależności od wieku i płci	.41
Tabela 2.6—3. Wartości parametrów metabolizmu cezu w zależności od wieku i płci na podstawie ICRP 56.	.42
Tabela 4.3.1—1. Przykładowe dane wejściowe używane przez model CLRP	.49
Tabela 4.3.2—1. Wartości parametrów korekcyjnych typu powierzchni dla cezu i jodu	.52
Tabela 4.3.4—1. Składniki karmy krów.	.62
Tabela 4.3.4—2. Składniki karmy owiec	.63
Tabela 4.3.4—3. Składniki diety pokarmowej trzody chlewnej	.64
Tabela 4.3.5—1. Metabolizm cezu zwierząt hodowlanych (dla określonego produktu diety człowieka)	.67
Tabela 4.3.5—2. Metabolizm jodu zwierząt hodowlanych (dla określonego produktu diety człowieka)	.68
Tabela 4.3.6—1. Parametry metabolizmu cezu w organizmie człowieka zastosowane do obliczeń w modelu CLRP.	.71
Tabela 4.3.6—2. Średnie roczne spożycie poszczególnych produktów w Polsce	.72
Tabela 4.3.10—1. Parametry redukcji dawek.	.78

Tabela 4.3.10—2. Współczynniki przeliczeniowe dawek dla poszczególnych grup wiekowych
Tabela 5.2.2—1. Wielkości dla porównania z danymi pomiarowymi, Scenariusz CB, Scenariusz S89
Tabela 5.2.2—2. Porównanie wyników Scenariuszy VAMP z przewidywaniami CLRP90
Tabela 5.3.1—1. Scenariusz Bremen - stężenie ¹³¹ I w mleku krów – wartości przewidywane i pomiarowe
Tabela 5.3.1—2. Scenariusz Bremen - stężenie ¹³⁷ Cs w mleku krów – wartości przewidywane i pomiarowe
Tabela 5.3.1—3. Scenariusz BREMEN - porównanie wyników CLRP i CHERPACK100
Tabela 5.3.1—4. Scenariusz Fort Collins- wartości przewidywane i pomiarowe w 1963 roku102
Tabela 5.3.1—5. Scenariusz Fort Collins- wartości przewidywane i pomiarowe w 1965 roku103
Tabela 5.3.2—1. Porównanie wyników modeli i uczestnikow BIOMOVS II (Scenariusz Bremen ¹³⁷ Cs)105
Tabela 5.4.1—1. Średnie dzienne stężenia ¹³¹ I w powietrzu w Warszawie obliczone na podstawie pomiarów Z-II i Z-VI
Tabela 5.4.1—2. Opady atmosferyczne w Polsce w okresie podwyższonych skażeń powietrza ¹³¹ I110
Tabela 5.4.2—1. Skażenie gleby (zakumulowany opadu) ¹³¹ I – wartości zmierzone i przewidywane114
Tabela 5.4.3—1. Stężenie ¹³¹ I w trawie pastwiskowej – wartości przewidywane i pomiarowe117
Tabela 5.4.4—1. Stężenie ¹³¹ I w mleku krów – wartości przewidywane i pomiarowe dla całej Polski121
Tabela 5.4.4—2. Stężenia ¹³¹ I w mleku krów- wartości przewidywane i pomiarowe (woj. Ostrołęckie)
Tabela 5.4.5—1. Stężenia ¹³¹ I w mleku owiec - wartości przewidywane i pomiarowe126
Tabela 5.4.6—1. Redukcja dawki dla dziecka 5 lat w zależności od czasu blokady – podana ilość jodu stabilnego 30 mg
Tabela 5.4.6—2. Redukcja dawki dla dziecka 10 lat w zależności od czasu blokady – podana ilość jodu stabilnego 60 mg
Tabela 5.4.6—3. Redukcja dawki dla człowieka standardowego w zależności od czasu blokady – zalecana ilość jodu stabilnego 60 mg
Tabela 5.4.7—1. Liczba pomiarów ¹³¹ I w tarczycy w zależności od wieku i rejonu Polski145
Tabela 5.4.7—2. Aktywności ¹³¹ I w tarczycy –wartości przewidywane i pomiarowe u dorosłych osób z całej Polski, nie stosujących blokady
Tabela 5.4.7—3. Aktywności ¹³¹ I w tarczycy –wartości przewidywane i pomiarowe u dorosłych osób z Warszawy nie stosujących blokady
Tabela 5.4.7—4. Aktywności ¹³¹ I w tarczycy –wartości przewidywane i pomiarowe u osó dorosłych z woj. Ostrołęckiego, które nie przyjmowały blokującej dawki stabilnego jodu150

Tabela 5.4.7–	-5. Aktywności ¹³¹ I w tarczycy –wartości przewidywane i pomiarowe u osób dorosłych z całej Polski , którzy otrzymali blokującą dawkę stabilnego jodu 29-30-kwiecień 1986r
Tabela 5.4.7–	-6. Aktywności ¹³¹ I w tarczycy –wartości przewidywane i pomiarowe u osób dorosłych z woj. Warszawskiego, którzy otrzymali blokującą dawkę stabilnego jodu 29-30-kwiecień 1986r.
Tabela 5.4.7–	 -7. Aktywności ¹³¹I w tarczycy –wartości przewidywane i pomiarowe u osób dorosłych z woj. Ostrołęckiego, którzy otrzymali blokującą dawkę stabilnego jodu 29-30-kwiecień 1986r.
Tabela 5.4.7–	-8. Aktywności ¹³¹ I w tarczycy –wartości przewidywane i pomiarowe u dzieci w wieku 5 lat z całej Polski, które otrzymały blokującą dawkę stabilnego jodu 29-30-kwiecień 1986r
Tabela 5.4.7–	–9. Aktywności ¹³¹ I w tarczycy –wartości przewidywane i pomiarowe u dzieci w wieku 5 lat z woj. warszawskiego, które otrzymały blokującą dawkę stabilnego jodu 29-30- kwiecień 1986r
Tabela 5.4.7–	-10. Aktywności ¹³¹ I w tarczycy –wartości przewidywane i pomiarowe u dzieci w wieku 10 lat z całej Polski, które otrzymały blokującą dawkę stabilnego jodu 29-30- kwiecień 1986r
Tabela 5.4.7–	-11. Aktywności ¹³¹ I w tarczycy –wartości przewidywane i pomiarowe u dzieci w wieku 10 lat z woj. warszawskiego, które otrzymały blokującą dawkę stabilnego jodu 29-30-kwiecień 1986r
Tabela 5.4.8–	 –1. Dawka obciążająca na tarczycę określona na podstawie pomiarów zawartości I-131 w tarczycy osób dorosłych
Tabela 5.4.8–	 –2. Dawka obciążająca na tarczycę określona na podstawie pomiarów zawartości I-131 w tarczycy dzieci i młodzieży (10-15 lat)
Tabela 5.4.8–	-3. Dawka obciążająca na tarczycę określona na podstawie pomiarów zawartości ¹³¹ I w tarczycy dzieci (5-10 lat)167
Tabela 5.4.8–	-4. Dawka obciążająca na tarczycę określona na podstawie pomiarów zawartości I-131 w tarczycy dzieci (1-5 lat)
Tabela 5.5.1–	-1. Średnie dzienne stężenia ¹³⁴ Cs i ¹³⁷ Cs w powietrzu obliczone na podstawie pomiarów wykonanych w okresie od 28.04 do 31.05 1986. [148]
Tabela 5.5.2–	-1.Stężenie ¹³⁷ Cs i ¹³⁴ Cs w powietrzu i ich przewidywana i zmierzona depozycja na powierzchnię gruntu
Tabela 5.5.3–	 -1. Stężenie ¹³⁷Cs w trawie –wartości przewidywane i pomiarowe w okresie maj-1986 – grudzień 1995 r
Tabela 5.5.3–	-2. Stężenie ¹³⁴ Cs w trawie –wartości przewidywane i pomiarowe w okresie maj-1986 – grudzień 1991 r
Tabela 5.5.3–	–3. Określenie parametrów równania zaniku stężenia Cs-137 w mleku182
Tabela 5.5.4–	 -1. Stężenie ¹³⁷Cs w mleku –wartości przewidywane i pomiarowe okresie maj-1986 - grudzień 1996 r

Tabela 5.5.4—2. Porównanie wartości stężenia ¹³⁴ Cs w mleku z wartościami pomiarowymi w okresie maj-1986 -grudzień 1991 r	
Tabela 5.5.5—1. Stężenie ¹³⁷ Cs w mleku owiec – wartości przewidywane i pomiarowe w okresie maj- czerwiec 1987 r	- 191
Tabela 5.5.6—1. Średnie spożycie poszczególnych produktów żywnościowych przez osoby dorosłe w różnych okresach 1986 r	v 195
Tabela 5.5.6—2. Zawartości ¹³⁷ Cs w całym ciele człowieka – wartości przewidywane i pomiarowe w okresie maj-1986 ÷ kwiecień-1989 r.	197
Tabela 5.5.6—3. Zawartość ¹³⁴ Cs w całym ciele człowieka - wartościami przewidywane i pomiarowe w okresie maj-1986 ÷ grudzień-1986 r	e 199
Tabela 5.5.7—1. Roczne skuteczne dawki obciążające od ¹³⁷ Cs – przewidywane i obliczone z danych pomiarowych.	1 203
Tabela 5.5.7—2. Dawki skuteczne od ¹³⁷ Cs z uwzględnieniem wkładu poszczególnych dróg narażenia– przewidywane i obliczone z danych pomiarowych	203
Tabela 5.5.7—3. Roczne skuteczne dawki obciążające od ¹³⁴ Cs – przewidywane i obliczone z danych pomiarowych.	1 204
Tabela 5.5.7—4. Dawki skuteczne od ¹³⁷ Cs z uwzględnieniem wkładu poszczególnych dróg narażenia– przewidywane i obliczone z danych pomiarowych	204

SPIS RYSUNKÓW

Rysunek 1.7-	-1: Model metabolizmu jodu w tarczycy wg. Johnsona. (Parametry człowieka standardowego)
Rysunek 4.2—	-1: Drogi przejść radionuklidu w środowisku lądowym człowieka rozważane przez model CLRP4
Rysunek 4.3.2-	—1.Procentowy udział aktywności ¹³¹ I związanej z aerozolem w zależności od średnicy aerozolu. (Przyjęty dla warunków aerodynamicznych w Polsce 28-kwiecień 10-maj – 1986, Średnia rozkładu E(D _{ae}) = 0.4 μm, Odchylenie Standardowe SD(D _{ae})=3 μm52
Rysunek 4.3.2-	—2. Prędkość osadzania opadu suchego V ⁱ _d w funkcji średnicy aerozolu D _{ae} i prędkości wiatru.
Rysunek 4.3.2-	-3 . Efektywność osadzenia opadu mokrego Λ^i_{ϕ} w zależności od intensywności opadu i średnicy aerozolu
Rysunek 4.3.3-	-1. Rozwój pszenicy jarej w cyklu jednorocznym (Polska Centralna)5
Rysunek 4.3.3-	-2. Rozwój ziemniaka wczesnego w cyklu jednorocznym (Polska Centralna)
Rysunek 4.3.3-	-3. Schemat transportu cezu w pszenicy jarej6
Rysunek 4.3.4-	—1. Przykładowy diagram dziennej diety zwierząt hodowlanych (krowy mleczne) w cyklu rocznym
Rysunek 4.3.4-	—2. Przykładowy diagram dziennej diety zwierząt hodowlanych (tucz świń) w cyklu rocznym
Rysunek 4.3.5-	—1. Przykładowy schemat metabolizmu cezu dla krowy mlecznej. Strzałkami zaznaczono szybkość przechodzenia cezu do poszczególnych przedziałów metabolizmu. W tym przypadku przedziałem krytycznym jest MLEKO.
Rysunek 4.3.5-	—2. Przykładowy schemat metabolizmu jodu dla krowy mlecznej. Strzałkami zaznaczono szybkość przechodzenia jodu do poszczególnych przedziałów metabolizmu. W tym przypadku przedziałem krytycznym jest MLEKO.
Rysunek 4.3.6-	-1. Schemat metabolizmu jodu w organizmie człowieka standardowego
Rysunek 4.3.6-	-2. Schemat metabolizmu cezu w organizmie człowieka standardowego7
Rysunek 4.3.10	—1. Diagram ilustrujący możliwe drogi ekspozycji człowieka oraz schemat obliczeń dawek ekspozycji wewnętrznej i zewnętrznej z uwzględnieniem parametrów redukujące dawkę
Rysunek 5.2.1-	—1. Diagram obrazujący procedurę weryfikacji parametrów opisujących przejścia radionuklidów między poszczególnymi piętrami ekosystemu (powietrze, depozycja, rośliny, zwierzęta)- testowania modelu w ramach VAMP
Rysunek 5.2.1-	—2. Diagram obrazujący procedurę testowania kodu komputerowego modelu w ramach VAMP

Rysunek 5.3.1–	-1. Porównanie przewidywanych przez model wartości stężenia ¹³¹ I w mleku z wartościami pomiarowymi	97
Rysunek 5.3.1–	–2. Porównanie przewidywanych przez model wartości stężenia ¹³⁷ Cs w mleku z wartościami pomiarowymi	99
Rysunek 5.4.1–	-1: Porównanie pomiarów stężenia ¹³¹ I w powietrzu przeprowadzonych przez Z-II i Z-VI1	11
Rysunek 5.4.2–	-1: Porównanie przewidywanych przez model wartości skumulowanego opadu ¹³¹ I z wartościami pomiarowymi	15
Rysunek 5.4.3–	-1: Porównanie przewidywanych przez model wartości stężenia ¹³¹ I w trawie z wartościami pomiarowymi	18
Rysunek 5.4.4–	-1: Porównanie przewidywanych przez model wartości stężenia ¹³¹ I w mleku z wartościami pomiarowymi	22
Rysunek 5.4.4–	-2: Porównanie przewidywanych przez model wartości stężenia ¹³¹ I w mleku z wartościami pomiarowymi (woj. Ostrołęckie)	24
Rysunek 5.4.5–	 -1: Porównanie przewidywanych przez model wartości stężenia ¹³¹ I w mleku owiec z wartościami pomiarowymi. 	27
Rysunek 5.4.6–	-1: Redukcja dawki w tarczycy od ¹³¹ I w funkcji czasu podania 60 mg dawki jodu stabilnego przy jednorazowym wchłonięciu.	30
Rysunek 5.4.6–	-2: Aktywność ¹³¹ I w tarczycy człowieka standardowego przy wchlonięciach drogą oddechową i podaniu jodu stabilnego w różnych terminach	31
Rysunek 5.4.6–	-3: Aktywność ¹³¹ I w tarczycy człowieka standardowego przy wchlonięciach drogą pokarmową i podaniu jodu stabilnego w różnych terminach1	32
Rysunek 5.4.6–	-4: Aktywność ¹³¹ I w tarczycy człowieka standardowego przy wchlonięciach drogą oddechową i pokarmową i podaniu jodu stabilnego w różnych terminach1	33
Rysunek 5.4.6–	-5: Aktywność ¹³¹ I w tarczycy dziecka w wieku 10 lat przy wchlonięciach drogą oddechową i podaniu jodu stabilnego w różnych terminach	34
Rysunek 5.4.6–	-6: Aktywność ¹³¹ I w tarczycy dziecka w wieku 10 lat przy wchlonięciach drogą pokarmową i podaniu jodu stabilnego w różnych terminach1	35
Rysunek 5.4.6–	-7: Aktywność ¹³¹ I w tarczycy dziecka w wieku 10 lat przy wchlonięciach drogą oddechową i pokarmową i podaniu jodu stabilnego w różnych terminach1	36
Rysunek 5.4.6–	-8: Aktywność ¹³¹ I w tarczycy dziecka w wieku 5 lat przy wchlonięciach drogą oddechową i podaniu jodu stabilnego w różnych terminach1	37
Rysunek 5.4.6–	–9: Aktywność ¹³¹ I w tarczycy dziecka w wieku 5 lat przy wchlonięciach drogą pokarmową i podaniu jodu stabilnego w różnych terminach1	38
Rysunek 5.4.6–	-10: Aktywność ¹³¹ I w tarczycy dziecka w wieku 5 lat przy wchlonięciach drogą oddechową i pokarmową i podaniu jodu stabilnego w różnych terminach1	39
Rysunek 5.4.7–	-1: Porównanie przewidywanych przez model wartości stężenia ¹³¹ I w tarczycy człowieka standardowego z wartościami pomiarowymi. (cała Polska bez blokady tarczycy)	47

Rysunek 5.4.7-	-2: Porównanie przewidywanych przez model wartości stężenia ¹³¹ I w tarczycy człowieka standardowego z wartościami pomiarowymi. (Mieszkańcy Warszawy bez blokady)	9
Rysunek 5.4.7-	-3: Porównanie przewidywanych przez model wartości stężenia ¹³¹ I w tarczycy człowieka standardowego z wartościami pomiarowymi. (Mieszkańcy Ostrołęki bez blokady tarczycy)	1
Rysunek 5.4.7-	-4: Porównanie przewidywanych przez model wartości stężenia ¹³¹ I w tarczycy człowieka standardowego z wartościami pomiarowymi	3
Rysunek 5.4.7-	-5: Porównanie przewidywanych przez model wartości stężenia ¹³¹ I w tarczycy człowieka standardowego z wartościami pomiarowymi	5
Rysunek 5.4.7-	—6: Porównanie przewidywanych przez model wartości stężenia ¹³¹ I w tarczycy u dzieci w wieku dziecko 5 lat z wartościami pomiarowymi15	8
Rysunek 5.4.7-	-7: Porównanie przewidywanych przez model wartości stężenia ¹³¹ I w tarczycy u dzieci w wieku 5lat z wartościami pomiarowymi	0
Rysunek 5.4.7-	-8: Porównanie przewidywanych przez model wartości stężenia ¹³¹ I w tarczycy u dzieci w wieku 10 lat z wartościami pomiarowymi.	2
Rysunek 5.4.7-	–9: Porównanie przewidywanych przez model wartości stężenia ¹³¹ I w tarczycy u dzieci w wieku 10 lat z wartościami pomiarowymi164	4
Rysunek 5.5.3-	—1: Porównanie przewidywanego stężenia ¹³⁷ Cs w trawie z wartościami pomiarowymi w okresie maj-1986 –grudzień 1995 r	8
Rysunek 5.5.3-	–2. Porównanie przewidywanego stężenia ¹³⁴ Cs w trawie z wartościami pomiarowymi w okresie maj-1986 –grudzień 1991 r	0
Rysunek 5.5.3-	-3. Stężenie ¹³⁷ Cs w mleku w Polsce– parametry równania zaniku ¹³⁷ Cs w mleku18	1
Rysunek 5.5.4-	–1. Porównanie przewidywanego stężenia ¹³⁷ Cs w mleku z wartościami pomiarowymi w okresie maj-1986 -styczeń 1987 r	6
Rysunek 5.5.4-	–2. Porównanie przewidywanego stężenia ¹³⁷ Cs w mleku z wartościami pomiarowymi w okresie maj-1987 -grudzień 1996 r	7
Rysunek 5.5.4-	-3. Porównanie przewidywanego stężenia ¹³⁴ Cs w mleku z wartościami pomiarowymi w okresie maj-1987 -grudzień 1991 r	9
Rysunek 5.5.5-	–1. Porównanie przewidywanego stężenia ¹³⁷ Cs w mleku owiec z wartościami pomiarowymi w okresie maj-czerwiec 1987 r	2
Rysunek 5.5.6-	–1. Porównanie przewidywanej zawartości ¹³⁷ Cs- w całym ciele człowieka z wartościami pomiarowymi w okresie maj-1987 ÷ kwiecień-1988 r	8
Rysunek 5.5.6-	–2. Porównanie przewidywanych zawartości ¹³⁴ Cs w całym ciele człowieka z wartościami pomiarowymi w okresie maj ÷ grudzień-1986 r200	0